Model for Pre-Surgical Intracerebral Hemorrhage Planning

Overview: The Phantom Brain

Design Team: Zayn Kayali, Alex Truettner, Joe Kerwin, Cate Fitzgerald, Kristen Schill

Advisor: Dr. Kristyn Masters

Client: Prof. Walter Block

Problem Statement

- It is difficult to characterize brain clots before removal.
- Characteristics of different clots vary.
- The differences in rigidity can affect the clinical approach used.
- A possible solution to this is a gel model that simulates the interior of the brain with various clots.

Background Material

- Currently not a lot is done for people with ICH besides stabilization.
- Other work has been done with brain phantoms, but nothing that we have found with the rigidity of brain clots.
- Two main methods of evacuating clots (drug based & evacuation)

PDS

- The phantom needs to mimic the structure and rigidity of a brain.
- White matter, gray matter, clots, and CSF.
- Durable for a long period of time.
- The Phantom must be able to handle powerful magnetic fields (no metal).
- represent a brain?

Biomaterial Design Matrix

Criteria	Algi	Alginate Agarose		rose	Gelatin	
Ease of Fabrication (25)	4/5	20	4/5	20	5/5	25
Biomimicry (25)	5/5	25	4/5	20	2/5	10
Cost (15)	<mark>4/</mark> 5	12	<mark>4/</mark> 5	12	5/5	15
Duration (15)	2/5	6	3/5	9	1/5	3
Thermostability (10)	5/5	10	3/5	6	1/5	2
Safety (10)	4/5	8	4/5	8	5/5	10
Total (100)	8	1	7	75	6	35

Alginate

Criteria	Alginate	
Ease of Fabrication (25)	4/5	20
Biomimicry (25)	5/5	25
Cost (15)	4/5	12
Duration (15)	2/5	6
Thermostability (10)	5/5	10
Safety (10)	4/5	8
Total (100)	81	

- Structurally similar to human tissue
- Very biocompatible
- Low toxicity
- Easy to make
- Customizable

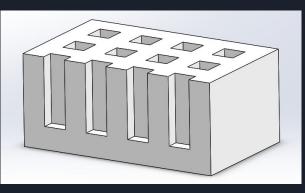
Agarose

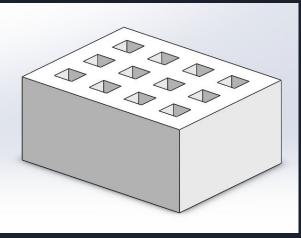
Criteria	Agarose		
Ease of Fabrication (25)	4/5	20	
Biomimicry (25)	4/5	20	
Cost (15)	4/5	12	
Duration (15)	3/5	9	
Thermostability (10)	3/5	6	
Safety (10)	4/5	8	
Total (100)	7	75	

- High gel strength
- Nontoxic
- Thermoreversible
- Cannot handle high temperatures

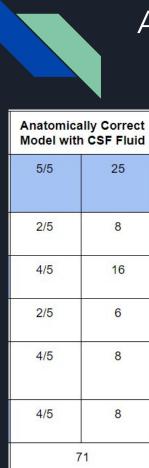
Gelatin

Criteria	Gelatin		
Ease of Fabrication (25)	5/5	25	
Biomimicry (25)	2/5	10	
Cost (15)	5/5	15	
Duration (15)	1/5	3	
Thermostability (10)	1/5	2	
Safety (10)	5/5	10	
Total (100)	65		

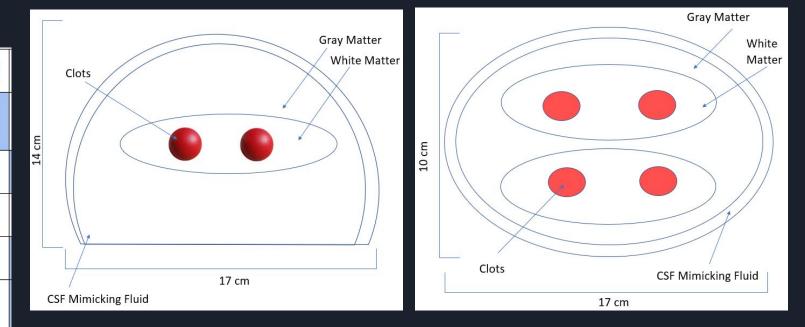

- Easy to make
- Cheap (\$8/kg)
- Safe
- Doesn't have as good properties.
- Poor thermostability



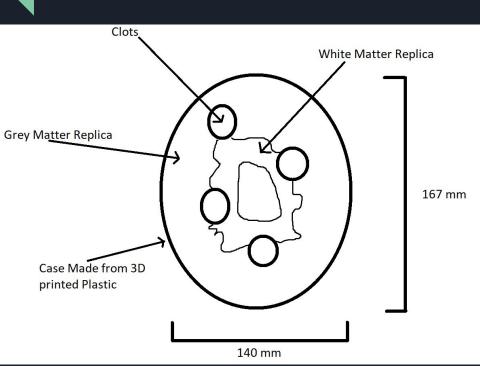
Container Design Matrix


Criteria		lel with 3D Ise		Illy Correct	Simple C	ontainer
Compatibility with US and MRI (25)	4/5	20	5/5	25	4/5	20
Ease of Fabrication (20)	2/5	8	2/5	8	3/5	12
Accurate Stiffnesses (20)	5/5	20	4/5	16	4/5	16
Ease of Use (15)	4/5	12	2/5	6	5/5	15
Ability to Hold Multiple Clots (10)	4/5	8	4/5	8	5/5	10
Compactness (10)	5/5	10	4/5	8	4/5	8
Total (100)	7	8	7	'1	8	1

Simple Container



Criteria	Simple Container		
Compatibility with US and MRI (25)	4/5	20	
Ease of Fabrication (20)	3/5	12	
Accurate Stiffnesses (20)	4/5	16	
Ease of Use (15)	5/5	15	
Ability to Hold Multiple Clots (10)	5/5	10	
Compactness (10)	4/5	8	
Total (100)	81		



Anatomical Model with CSF Fluid

Brain Model with 3D Case

Criteria	Brain Model with 3D Case		
Compatibility with US and MRI (25)	4/5	20	
Ease of Fabrication (20)	2/5	8	
Accurate Stiffnesses (20)	5/5	20	
Ease of Use (15)	4/5	12	
Ability to Hold Multiple Clots (10)	4/5	8	
Compactness (10)	5/5	10	
Total (100)	78		

Future Work

- Fabricate & Test Alginate
 - Various stiffnesses
- Create First Clot Models
- Integrate Clots in to "Brain" Matter
- Create a final model
 - Resembles Brain
- Increase accuracy of materials
 - T2 measurements
 - Biomimicry

https://www.biodex.com/nuclear-medicine/products/phantoms/hoffman-3-d-bra in-phantom%e2%84%a2

References

[1] Csun.edu. (2019). [online] Available at: http://www.csun.edu/~ll656883/lectures/lecture10.pdf [Accessed 3 Oct. 2019].

[2] Lee, K. and Mooney, D. (2019). Alginate: Properties and biomedical applications.

[3] Leibinger, A., Forte, A., Tan, Z., Oldfield, M., Beyrau, F., Dini, D. and Baena, F. (2014). *Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study*. [online] NCBI. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937066/ [Accessed 3 Oct. 2019].

[4] Martinez, J. and Jarosz, B. (2015). *3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization*. [online] IOPscience. Available at: https://iopscience.iop.org/article/10.1088/0031-9155/60/5/1879 [Accessed 3 Oct. 2019].

Acknowledgments

A Special thanks to:

- Dr. Masters
- Prof. Block
- The BME Department