Cast Saw Cooling Device

Team Leader: Noah Nicol Communicator: Rebecca Swanson BSAC: Xu He BWIG: Angelica Lopez BPAG: Caleb Ravn

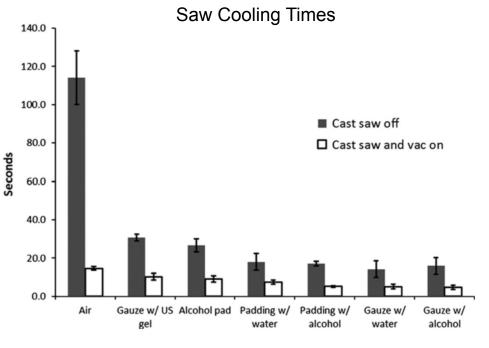
Client Overview

- Dr. Rahul Samtani
 - Orthopedic Surgeon

- Speciality
 - Sports injury
 - Degenerative disease
 - Joint repair and replacement

Problem statement

- Friction from cast saws generate heat capable of resulting in 3rd degree burns
 - $\circ~~130^\circ F$ for 30s and 150° for $2s^{[A]}$
 - \circ Some saws reach 215°^[B]
- Patients are occasionally burned during cast removal -injuries should not be created in a hospital unnecessarily!
- Cast materials: plaster and fiberglass


Cast Cutting Demo

Background

- Vibratory device
- Saw blade oscillates to cut
- Blades tend to heat up during cutting process
- Causes burns and blisters on patients
- Previous research papers suggest water or ethanol cooling

Puddy et. al

Product Design Specifications

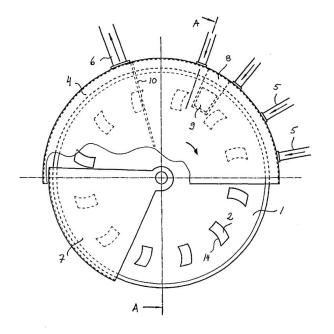
- **Performance requirement** : Blade temperature < 44°C (Burning temperature of skin)
- Life in service : same as the blade durability
- **Operating environment** : Examination room(room temperature), withstand a range of conditions- not limited to indoor clinical settings.
- **Size/Weight :** Held in one hand, not impede cutting ability (entire assembly < 3kg).
- Material: compatible with coolant and metal blade.
- **Product cost:** No budget limits but need to state purpose /proposal before receiving budget
- Standard & Specifications: CFR Class I (General controls: exempt from premarket notification) ^[c]

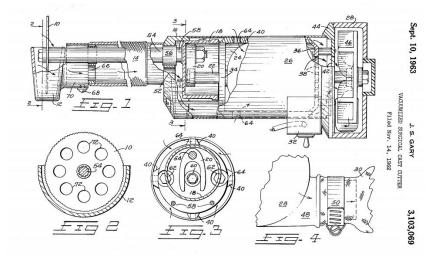
Design Compatibility

BAOSHISHAN Electric Cast

Cutter Plaster

• \$517

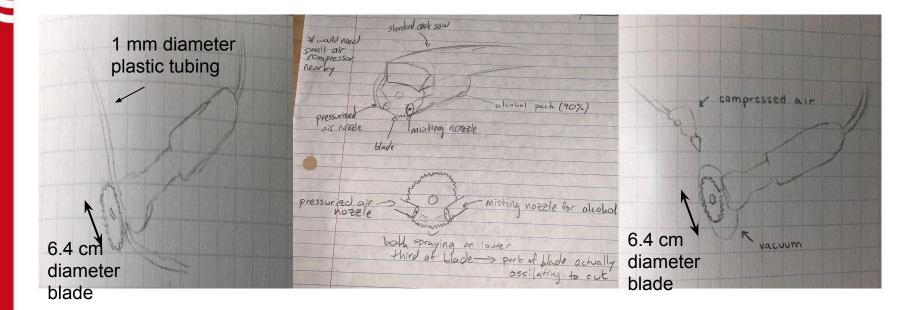




Competing Designs

Cooling System for Rotary Blade

Vacuumized Surgical Cast Saw Cutter

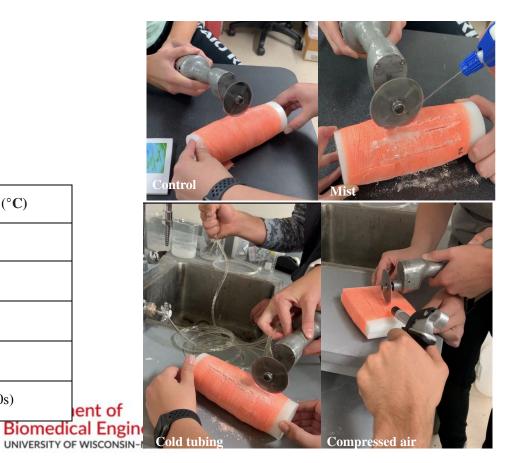


Design Ideas

Cold Tubing

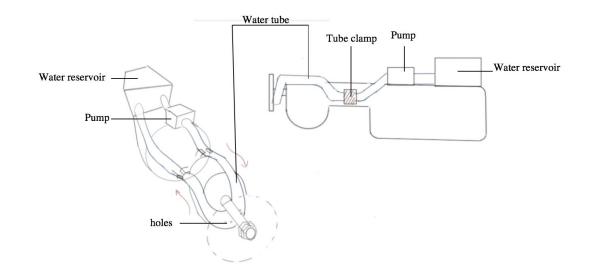
Mist + Vacuum

Compressed Air + Vacuum


Design Matrix

Design Criteria	Cold Tubing	Mist + Vacuum	Compressed Air + Vacuum
Cooling Reliability (35)	4/5 28	5/5 35	4/5 28
Ease of Fabrication/Assembly (15)	5/5 15	4/5 12	3/5 9
Ergonomics/Ease of Use (10)	3/5 6	2/5 4	2/5 4
Durability (10)	2/5 4	4/5 8	4/5 8
Aesthetics (10)	3/5 6	4/5 8	3/5 8
Cost (10)	4/5 8	4/5 8	3/5 6
Safety (5)	5/5 5	4/5 4	3/5 3
Fear Factor (5)	4/5 4	2/5 2	1/5 1
Total (100)	76	81	67

- 6-7 turns to make cast
- Two cutting process in a row
- Infrared camera to record temperature


Preliminary Testing

	Blade Temp (°C)	Cast Temp (°C)	
Stationary	22	22	
Control	113	47	
Cold tubing	50	46	
Mist	32	45	
Compressed air	43	25 (after 30s)	ent of

Future Work

- Install mist system combined with cold tubing
- Do more testing with cold tubing (varying wall of the tube, diameter & material)
- Consider skin temperature and dust production.
- Find material that could mimic skin's thermal properties for testing

Acknowledgements

Dr. John Puccinelli - Advisor

Dr. Rahul Samtani - Client

References

[A]Accuratebuilding.com. (2019). *Hot Water Burn & Consumer Safety: Chart -Accurate Building Inspectors* ® | *1-800-640-8285* |. [online] Available at: http://www.accuratebuilding.com/services/legal/charts/hot_water_burn_scalding_grap h.html [Accessed 29 Sep. 2019].

[B]J. Killian, S. White and L. Lenning, "Cast-Saw Burns: Comparison of Technique Versus Material Versus Saws", *Journal of Pediatric Orthopaedics*, vol. 19, no. 5, 1999. Available: 10.1097/01241398-199909000-00026 [Accessed 11 September 2019].

[C]"CFR - Code of Federal Regulations Title 21." [Online]. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=8 88&showFR=1&subpartNode=21:8.0.1.1.31.5. [Accessed: 02-Oct-2019].

[D] Puddy, Alan C, et al. Cast Saw Burns: Evaluation of Simple Techniques for Reducing the Risk of Thermal Injury.

