

Model for Supracondylar Humerus Pediatric Fracture

Team Funny Bones Members

Team Leader- Liam Granlund Communicator- Maisha Kasole BSAC- Laura Robinson BWIG- Megan Baier BPAG- Micaiah Severe <u>Advisor</u> Dr. Benjamin Cox <u>Client</u> Dr. Pamela Lang

Overview

A model for repairing pediatric humerus fractures

 $Goal \rightarrow Training orthopaedic resident surgeons$ $Current Status \rightarrow Design Evaluation$ $Next Step \rightarrow Fabrication$ $Future \rightarrow Testing$

Problem Statement

- One of the most **common** fracture in children_[1]
- Don't have a model to evaluate ability
- Residents need **practice** for the surgery
- If done incorrectly life long damage may occur

Product Design Specifications

- Client wants **realistic** design
- The surgery requires a certain feel
- Current models are not **reusable**
- Needs to be radiopaque
- Stepping stone for future models

Pathoanatomy

- Layout of the supracondylar area[3]
 - Posteriorly: Olecranon fossa
 - Anteriorly: Coronoid fossa
 - Both sides: Supracondylar ridges
 - In proximity: Neurovasculature (ulna, median, radial)
- Why does it happen more in children?[3]
 - Ossification timing

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click% 20on%20image%20to%20zoom&p=PMC3&id=2682409_12178_2008_9027_Fig1_HTML.jpg

Pathoanatomy^[2]

https://ars.els-cdn.com/content/image/3-s2.0-B9780323390385000184-f018-001-9780323390385.jpg?_

https://ars.els-cdn.com/content/image/3-s2.0-B9780323390385000184 -f018-002-9780323390385.jpg?_ https://ars.els-cdn.com/content/image/3-s2.0-B9780323390385000184-f018-003-9 780323390385.jpg?_

Types of injuries

Type I Non-displaced [1]

Type II displaced, posterior context intact [1]

Type III displaced, in 2 or 3 planes [1]

Type IV Complete periosteal disruption [1]

https://upload.orthobullets.com/4007/images/suprac ondylar%20type%20i%20ap.jpg

https://upload.orthobullets.com/topic/4007/i mages/lat_sch_2.jpg

https://upload.orthobullets.com/topic/4007/image s/g3.jpg

https://upload.orthobullets.com/topic/4007/images/sche.jpg

Treatment : Closed Reduction and Percutaneous Pinning

The steps of the surgical procedure are as follows:

- → 1. Position the patient face up
- → 2. Place the affected extremity under a fluoroscopy detector
- → 3. Perform the closed reduction
 - Apply traction with the elbow at 30 degrees of flexion
 - Correct displacement then correct misalignment
 - Maintain traction and flex the elbow
 - Assess reduction using fluoroscope
 - Place pins laterally (2 for Type II) (3 for Type III)
 - Assess stability then cut pins
 - Apply cast

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296534/bin/jcdr-10-RE01-g004.jp

Design Alternatives Considered

- ➔ Modifying Sawbones Model
 - Tissue Envelope
 - Radiopaque Bones

https://www.sawbones.com/arm-right-pediatric-soft-ti ssue-envelope-for-bone-assemblies-1530-13-1.html

https://www.sawbones.com/elbow-right-pediatric-solid-fo am-radiopaque-1024-63.html

- → Third Party Manufacturer
 - Printing in Silicone
- → 3d Printing at The Makerspace
 - For Bone Tough PLA
 - Tissue Elastic Resin

Design Criteria (Weight)	Modified Sawbones		MakerSpace 3D print		Third-party 3D print	
Reusability (25)	4/5	20	3/5	15	3.5/5	17.5
Functionality (25)	4/5	20	2.5/5	12.5	3.5/5	17.5
Ease of Fabrication (20)	4.5/5	18	2.5/5	10	3.5/5	14
Cost (15)	5/5	15	4/5	12	3/5	9
Appearance (10)	4/5	8	2.5/5	5	4.5/5	9
Safety (5)	5/5	5	3.5/5	3.5	3.5/5	3.5
Total	82		70		77.5	

Modifying the Model

Evaluation:

- → Instructors must be able to evaluate students performance-
 - Drilling location
 - Pin angles
 - Hazards
- → Envelope must be removable
 - Options considered
 - Final decision- zipper attachment

Modifying the Model

Reusability:

- → Model will be used many times by students
- → Challenges:
 - Withstanding many drill holes
 - Maintain functionality
 - Starting with a "clean slate" everytime
- \rightarrow Design matrix

Modifying the Model

Design Criteria (Weight)	Unfilled Holes		Styrofoam Patch		Silly Putty Patch	
Reusability (25)	2/5	10	3/5	15	4/5	20
Functionality (25)	3/5	15	4/5	20	4/5	20
Cost (15)	5/5	15	3/5	9	4/5	12
Appearance (15)	4/5	12	2/5	6	3.5/5	10.5
Ease of Fabrication (15)	5/5	15	3/5	9	4/5	12
Safety (5)	5/5	5	5/5	5	5/5	5
Total	72		64		79.5	

Future Work: Humerus Model Process Plan

Acknowledgements

The **Funny Bones** team would like to thank:

Dr. Pamela Lang Dr. Benjamin Cox Sawbones The Makerspace

[1] Woon, Colin et. al. "Supracondylar Fracture - Pediatric." *Orthobullets*, 2019. https://www.orthobullets.com/pediatrics/4007/supracondylar-fracture--pediatric.

[2]Stans, Anthony "Humeral Supracondylar Fracture" *Humeral Supracondylar Fracture - an Overview | ScienceDirect Topics*, 2018. https://www.sciencedirect.com/topics/medicine-and-dentistry/humeral-supracondylar-fracture.

[3] V. Kumar, "Fracture Supracondylar Humerus: A Review," *Journal Of Clinical And Diagnostic Research*, 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296534/

