VetMed: Design and Mechanical Analysis of Patient-Specific Mandibular Reconstruction Implants

Advisor: Dr. Melissa Skala

Client: Dr. Graham Thatcher And Dr. Jason Bleedorn

Team Members

Team Leader: Will Wightman

Communicator: Laura Richmond

BSAC: Young Kim

BWIG: Cade Van Horn

BPAG: Kylie Gaspar

Figure 1: From left to right: Cade Van Horn, Kylie Gaspar, Will Wightman, Laura Richmond, Young Kim

Current Problems with Canine Mandibular Implants

- Not patient specific
- Stress on patient unknown
- Labor intensive process
- Approximation
- Resources not optimized

Force BiteForce BiteForce Bite328 pounds235 pounds238 pounds195 pounds

Figure 3: Current model of implant. The long piece is the titanium implant, the smaller darker piece is a titanium lattice to promote bone growth [From client]

Important Anatomy of Canine Jaw

Figure 6:

6.jpg?

Major muscles of canine mandible

- Jaw adductor muscles
 - Four main muscles control movement
- Temporomandibular joints
- Limited lateral movement
- Force transfers directly to teeth

Nerves

[Kim, S., Arzi, B., Garcia, T. and Verstraete, F. (2018).]

Current/Competing Products

The current process:

- CT data
- Materialize Mimics and 3-Matic

Competing Products:

- Articulated bone reconstruction bar
- Modular mandibular prosthesis
- Mandibular prosthetic apparatus kit

Figure 7: Right lateral view of a three-dimensional reconstruction of a CT scan of the skull of a dog <u>https://www.eastcottreferrals.co.uk/article/205/Imm</u> <u>ediate-Mandibular-Bone-Reconstruction-Dog/</u>

PDS-Summary

Function:

- Optimize dimensions of jaw implant
- Efficient placement of screws
- Avoid problem areas

Final Product:

- Easy to use for doctors and veterinarians
- Accurately represent dog anatomy
- Functional and aesthetic outcome **Cost:**
- \$500
- Subscriptions and licences to software

Figure 8: Veterinarian and Dog Patient https://nadovet.com/services/pet-de ntal/pet-dental-faq.html

Design Ideas

- The Tiered: Matlab / SolidWorks
 - Process split between multiple programs
- The Monolithic Plug-In to Image-J (Java)
 - Open source coding with easy interface
- The Iterator- Generative Design
 - Computer optimizes design over and over again
 - The Square One Independent Application
 - Generate a program from scratch

Figure 9: Team Logo

Design #1- The Tiered MatLab and Solidworks

- Portions of the process are split between different programs
- Easiest to program
- Requires multiple licenses
- Requires switching between programs

Design #3- The Iterator Generative Design

- Computer generates and optimizes design thousands of times
- Based on machine learning
- Hard to build from scratch
- Many easy-to-use services exist [CGCookie]

Design Matrix

	Criteria	Weight	The Tiered Matlab / SolidWorks		The Monolithic Plug-In to Image-J (Java)		The Iterator Generative Design		The Square One Independent Application	
Rank										
			Score (10 max)	Weighted Score	Score (10 max)	Weighted Score	Score (10 max)	Weighted Score	Score (10 max)	Weighted Score
1	Cost	20	2	4	10	20	3	6	10	20
2	Accessibility / Compatibility	20	4	8	10	20	10	20	10	20
3	Convenience / Ease of Use	15	6	9	8	12	10	15	8	12
4	Computational / User Time	15	7	11	8	12	1	2	5	8
5	Ease of Programming	15	8	12	9	14	7	11	2	3
6	Resolution of Implant	10	7	7	7	7	10	10	7	7
8	Safety	5	10	5	10	5	10	5	10	5
	Sum	100	Sum	56	Sum	90	Sum	68	Sum	75

Figure 14: Design Matrix

Current Chosen Design

Java Plugin ImageJ

- Most cost effective
- Most compatible/ accessible
- Time efficient
- Easiest interface

Figure 15: ImageJ Logo and Set Up https://i.ytimg.com/vi/2vHUbuGyoC0/maxresdefault.jpg

Potential Problems

- File type compatibility [imagej.1557.x6.nabble.com/]
 - Plug-in development
- Difficulty of writing code
- No existing package to conduct finite element testing
- Simplified force analysis methods
 - Large factor of safety

Figure 16: Image of printed implant [From Client]

Conclusion and Future Work

- Development of The Monolithic using Java and ImageJ
- Run process with multiple variations
- 3D print initial prototype
- Consult with professionals
- Revise process

Figure 17: A puppy biting a finger in demonstration of the typical forces acting in the canine jaw <u>https://topdogtips.com/wp-content/uploads/2017</u> <u>/06/How-bite-force-in-dogs-is-measured.jpg</u>

Acknowledgements

Thanks to:

- Our clients, Dr. Graham Thatcher and Dr. Jason Bleedorn, for proposing this project and providing input on different design ideas
- Our advisor, Dr. Melissa Skala, for guiding us throughout the preliminary design process
- The BME Department, for providing us with the opportunity to work on this project

Figure 18: Team Logo

References

2019].

Doherty, T. and Schumacher, J. (2019). *Mandibular Foramen - an overview* | *ScienceDirect Topics*. [online] Sciencedirect.com. Available at: <u>https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/</u> <u>mandibular-foramen</u> [Accessed 3 Oct. 2019].

Kim, S., Arzi, B., Garcia, T. and Verstraete, F. (2018). Bite Forces and Their Measurement in Dogs and Cats. *Frontiers in Veterinary Science*, 5.

MathWorks - Pricing and Licensing: https://www.mathworks.com/pricing-licensing.html

SolidWorks - Pricing and Licensing: <u>https://www.solidworks.com/how-to-buy</u>

ImageJ Plug-Ins - https://imagej.nih.gov/ij/plugins/

CGCokkie.com - Generative Modeling and Design: <u>https://cgcookie.com/course/generative-modeling-design-with-Midge-sinnaeve</u>

Imagej.1557.x6.nabble.com - Convert ImageJ Stacked tiff to stl for 3D printing: <u>http://imagej.1557.x6.nabble.com/</u> <u>Convert-Imagej-Stacked-tiff-to-stl-for-3D-Printing-td5002493.html</u>

Competing Products - Manolidis, S. (1998). Modular mandibular prosthesis. US6060641A. [Accessed 18 Sep.

Questions?

