

# **Operation Feedback**

Kiley Smith, Ian Schirtzinger, Billy Brown, Alec Veal, Matt Suzuki

### Overview

- Gap in Training for IV Placement
- Procedure, Proper Technique, and Mishaps
- Product Design Specifications
- Competing Designs
  - Fake Blood Model
  - Human IV Model
- Design Concepts
  - Wire Circuit
  - Double Feedback
  - Coaxial Needle
- How it Will Work
- Future Work



### **Problem Statement**

- Design a model animal limb that vet-students can practice implementing catheters and IV's into a dog's vein while receiving feedback in real time
- Existing training models used by students do not provide adequate feedback



# **Background Research**

- The procedure we will be replicating will be placing a catheter in a dog's cephalic vein
- The most common complication when placing an IV catheter is muscle and nerve damage
- A catheter should be inserted at 15 to 30 degrees





## **Product Design Specifications**

- Durability: Able to withstand bi-weekly use for two years
- Cost: Under \$350
- Functionality: Should be able to be powered by a laptop or wall outlet
- Portability: less than 15 lbs.
- Client requirements: Dislikes dyed fluid discharge as positive feedback.



### **Existing Designs**

- Utilize fake blood
- Provides no other response



### Vein (under sleeve)



# **Existing Designs**

### Pump mechanism

- Expensive <1500\$
- Fake blood
  - Messy
- Arm uses a pump to create a pulse
- Replication of human skin
  - Allows for hundreds of injections without damage



# Fake veins under skin



## Design Concepts



### Design One: Wire Circuit

- Thread a wire through the lumen of the vessel



Cross section of blood vessel model

#### **Design 1: Center Wire**



### Design Two: Double Feedback



Cross section of blood vessel model

#### **Design 2: Thin Conductive Band**





Detects change in impedance when inserted into the gel

### **Design 3: Coaxial Needle**



### Preliminary Design Matrix

| Criteria           | Wire Through | Thin Band | Conductive Gel |
|--------------------|--------------|-----------|----------------|
| Cost (10)          | 9 (0.9)      | 8 (0.8)   | 5 (0.5)        |
| Accuracy (20)      | 5 (1)        | 9 (1.8)   | 10 (2)         |
| User friendly (30) | 4 (1.2)      | 7 (2.1)   | 9 (2.7)        |
| Durability (20)    | 10 (2)       | 6 (1.2)   | 8 (1.6)        |
| Complexity (20)    | 8 (1.6)      | 5 (1)     | 7 (1.4)        |
| Weighted Score     | 6.7          | 6.9       | 8.2            |



### How it Will Work





### Circuitry





### Future Work





### **References and Acknowledgements**

### Thank You to Dr Block and Prof Cooley

- <u>https://cdns.webareacontrol.com/prodimages/1000-X-1000/3/r/3102016514B.-Braun-Int</u> rocan-Safety-FEP-Straight-IV-Catheter-L.png
- https://www.ebmconsult.com/articles/seldinger-technique-intravenous-iv-placement
- <u>https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6</u>
- https://www.adafruit.com/product/297
- <u>https://pdfs.semanticscholar.org/9414/923265b5bb29a435761b7159f1485f2ac3e1.pdf</u>
- <u>https://www.cliniciansbrief.com/article/step-step-peripheral-catheter-placement</u>
- <u>https://pdfs.semanticscholar.org/9414/923265b5bb29a435761b7159f1485f2ac3e1.pdf</u>





