

Design of a Force-Controlled Cartilage Bioreactor

Proof-of-Concept Prototype Presentation

FC Bioreactor – ME 351 / BME 400

Background

Mechanical **loading → metabolic dysfunction →** osteoarthritis-like **damage** and cartilage disease

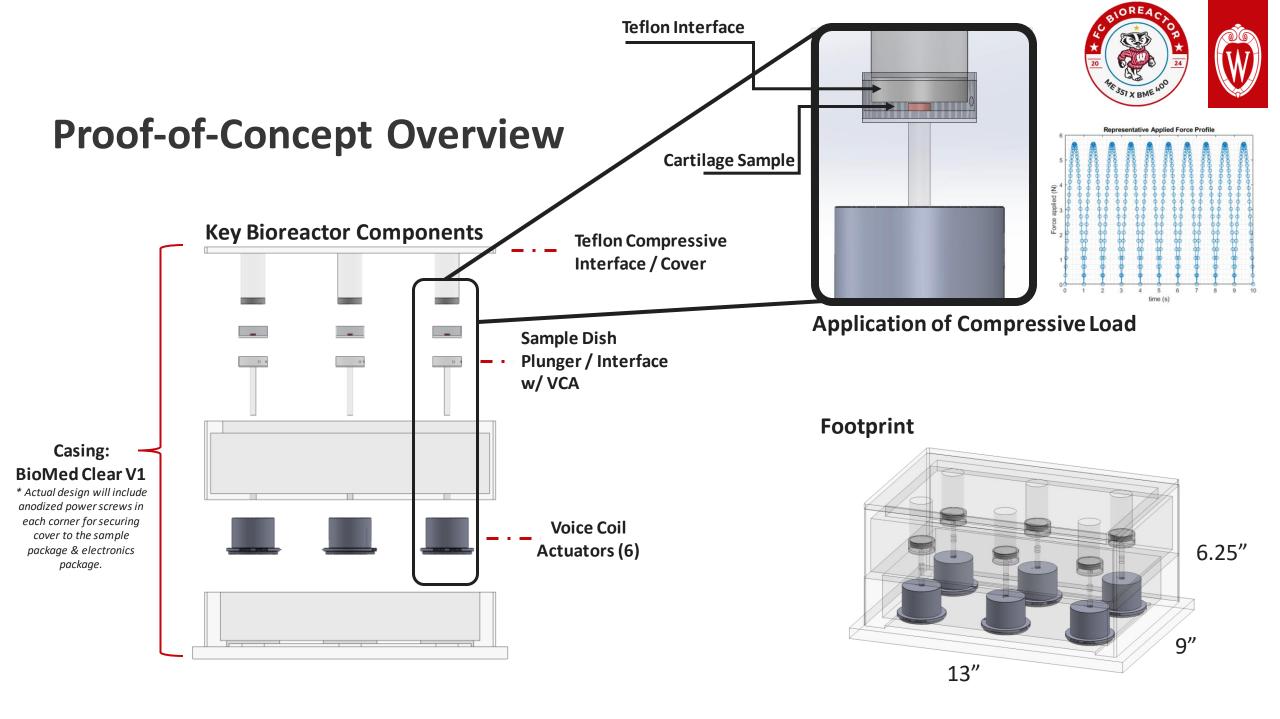
ğ

To enable research on cartilage metabolic dysfunction and its connection to cartilage disease state, Dr. Henak has requested a device to apply cyclic loading over long timescales (1 hr to days & weeks) with control over amount of force applied

Design Requirements

Incubator-Compatible

Budget


≤ \$5000

- 1. Fits within 20 x 21 x 25 [in³] space
- 2. Operates in 37 °C, humid environment
- 3. <u>Aseptic Technique Friendly</u>
 - 1. Capable of adequate sterilization to ensure proper tissue culture

Relevant, Biocompatible Force Application

- 1. <u>~ 20% strain on cartilage samples</u>
- 2. <u>Applied strain must be force-controlled</u>, not displacement-related, due to poroelastic behavior of cartilage
 - 1. Linear elastic approximation yields ~ 6 N minimum requirement; to ensure client needs are met, <u>actuation needs to apply 12 N</u>
- 3. <u>Sinusoidal loading profile, ~ 0.1 10 [Hz]</u>
- 4. Low-friction, biocompatible interface contacting sample in compression

Design Requirements

Incubator-Compatible

Budget

≤ \$5000

- 1. Fits within $20 \times 21 \times 25$ [in³] space \rightarrow See provided dimensions.
- 2. Operates in 37 °C, humid environment \rightarrow All components can function in environmental conditions.
- 3. <u>Aseptic Technique Friendly</u> \rightarrow All non-electronic materials are autoclave-friendly.
 - 1. Capable of adequate sterilization to ensure proper tissue culture

Relevant, Biocompatible Force Application

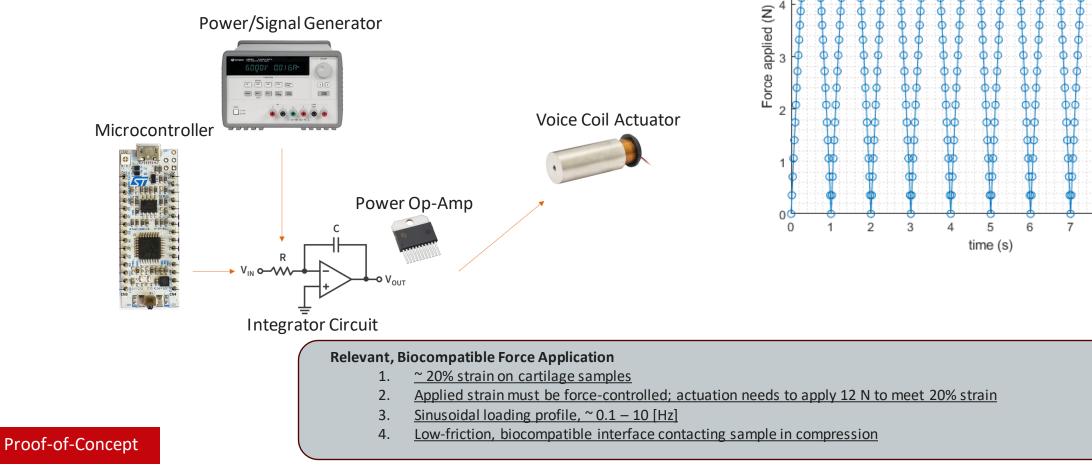
- 1. $\simeq 20\%$ strain on cartilage samples \rightarrow Selected VCA outputs sufficient force for ~40%.
- 2. <u>Applied strain must be force-controlled</u>, not displacement-related, due to poroelastic behavior of cartilage → VCA translates electric current to force output.
 - 1. Linear elastic approximation yields ~ 6 N minimum requirement; to ensure client needs are met, <u>actuation needs to apply 12 N</u>
- 3. Sinusoidal loading profile, ~ 0.1 10 [Hz] \rightarrow Sinusoidal function input.
- Low-friction, biocompatible interface contacting sample in compression → Teflon allows for low-friction, biocompatible impact.

 \checkmark

Questions?

Supplementary information available on actuation, actuation control, and Teflon interface.

A BOREACTOR A BOR


Actuation

- Voice coil actuator operation
 - Apply current or voltage → Magnetic field in coil → <u>Displacement/Force</u>
- Pros:
 - Can quickly modulate current and force at 0.1-10 Hz
 - No significant losses due to friction

DC Current/Voltage Source
ThorLabs VC125C/M \$520 / unit At standard operating conditions, can produce relevant forces Cartilage Samples
Relevant, Biocompatible Force Application 1. ~ 20% strain on cartilage samples 2. Applied strain must be force-controlled; actuation needs to apply 12 N to meet 20% strain 3. Sinusoidal loading profile, ~ 0.1 – 10 [Hz] 4. Low-friction, biocompatible interface contacting sample in compression

Actuation Control

- 0.1-10Hz of sinusoidal loading profile
 - Start with a triangle wave
- Different components to generate signal

8

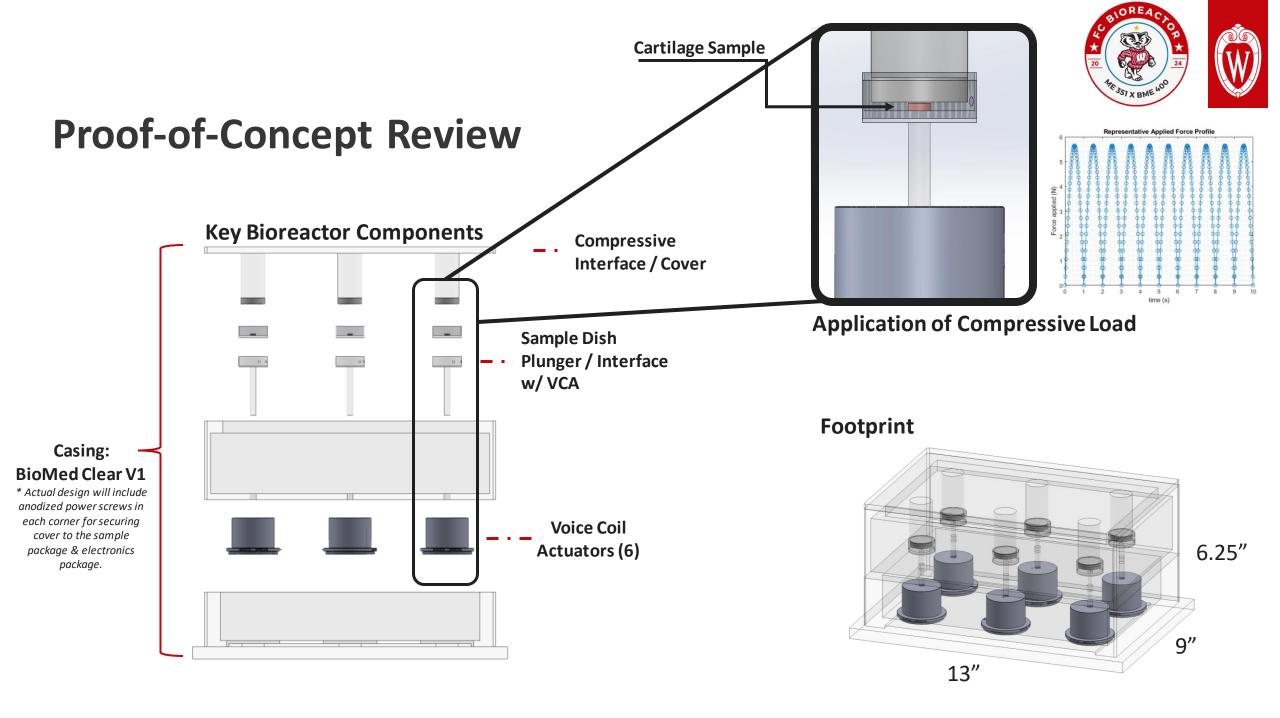
9

10

Representative Applied Force Profile

Interface Material - PTFE

- Chemically inert, nontoxic, and nonflammable substances
- Low coefficient of friction \rightarrow less shear stress on the tissue
- High-temperature resistance: M.T.: 635°F (335°C)
 - Sterilization method: Autoclave
- Fabrication
 - The plate and PTFE columns will be fastened using button head socket cap screws along with flat washers



Relevant, Biocompatible Force Application

- ~ 20% strain on cartilage samples 1.
- Applied strain must be force-controlled; actuation needs to apply 12 N to meet 20% strain 2.
- 3. Sinusoidal loading profile, $\sim 0.1 - 10$ [Hz]
- Low-friction, biocompatible interface contacting sample in compression

