Ergonomic Prosthetic Ear Attachment

Eamon Bernardoni, Jim Mott, Brooke Sampone, Michelle Tutkowsk

Advisor: Thomas Yen, Ph.D. Client: Gregory G. Gion, MMS, CCA of The Medical Art Prosthetics Clinic

Abstract
Arcicular prostheses are often used to correct deformities of the ear resulting from physical trauma, cancer, or birth defects such as microtia. When reconstructive surgery or slip-on prostheses are not an option, the remaining ear is often removed and a new prosthetic ear is made. To hold the prosthetic ear in place, magnetic abutments are implanted into the skull while matching magnets are set into a silicone prostheses. Though the prostheses is easy to attach with this method, it is easily displaced due to posterior of anterior forces. Last semester our group developed an attachment method that allows the prostheses to slide into a locked position. This design offers additional attachment strength while allowing the user to easily attach, remove, and clean the prostheses. This design does not work when the abutments are not parallel to each other and has the potential to damage the skull bone if the prostheses encounters a large force. This semester we modified the abutment cap so that our sliding method works with non-parallel abutments and breaks away before the skull is damaged.

Need for a New Method
- Observable ear defects are a source of psychological trauma [1]
- The need for an ear prosthesis may result from physical trauma, cancer, or birth defects such as microtia [1]
- Prosthesis attachment and detachment is simple for the user with the magnetic attachments, but difficult with the bar and clip method [2]
- Security of attachment is at stake
- Concern with anterior and posterior forces
- Attachment is often too strong with bar and clip method and compromises the integrity of bone and surrounding tissue

New Attachment System
- Resists unintentional dislodgement
- Withstands anterior and posterior forces
- Fails before bone is damaged
- Integrates with titanium implants
- Requires minimal effort to remove and attach
- Applies to a variety of abutment orientations and head topographies
- Costs less than current method ~ $110 per attachment

Abutment Redesign
- Conical lower half of abutment to accommodate randomly angled implants
- Cylindrical upper half of abutment for secure fit in attachment
- Manufactured from a polymer: PS, LDPE, Nylon, or Acrylic

Design Features
- Conical lower half of abutment to accommodate randomly angled implants
- Cylindrical upper half of abutment for secure fit in attachment
- Manufactured from a polymer: PS, LDPE, Nylon, or Acrylic

Failure force for different materials using SolidWorks modeling. Ideally we want failure to occur when a 30 N force is applied to the side of the abutment (black line).

Future Considerations
- Fabricate real size abutment cap using injection molding
- Test new device for accuracy of break away force to ensure that no bone damage occurs
- Metal attachments should be disguised with a flesh color coating
- Usability testing should be performed with actual patients
- Develop a system to allow the client to easily align the attachments when putting them in a prosthesis

Acknowledgements
Gregory G. Gion, MMS, CCA, Medical Art Prosthetics
Thomas Y. Yen, Ph.D., University of Wisconsin-Madison, Department of Biomedical Engineering
John P. Puccinelli, University of Wisconsin-Madison, Department of Biomedical Engineering
Katerina M. Sanchez, University of Wisconsin-Madison, Department of Mechanical Engineering

References
[5] Figure from: http://homepages.cae.wisc.edu/~bme300/ear_attachment_f09/secure/reports/BME_300_Final_Report1.pdf