ABSTRACT

A successful device will hold two optical probes so that they can be prepared and inserted in a cancerous tumor. This device should have the following characteristics:

Physical/Operational Characteristics
- Fix two optical probe needles 3mm apart, tip-to-tip
- Allow for >2mm penetration of epidermis
- Maintain rotational/translational rigidity
- Minimize invasiveness
- Be reusable

Production Characteristics
- Allow for simple manufacturing
- Be manufactured within a budget of ~$100

INTRODUCTION

Radiation Therapy and Cancer
- Current methods focus on controlled, uniform dose (illustrated)
- Our clients method attacks tumor as it changes throughout treatment

Hypoxia as Dominant Factor
- Tissue damage from radiation comes largely from secondary oxygen free-radicals (3)
- Tracking oxygen levels indicates where radiation will be more or less damaging
- More oxygenated parts of the tumor will be more affected as a result of the increase in radical formation.

DESIGN CRITERIA

Our design was tested to determine the force with which it could hold the needles both individually and with both needles in the device.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Single Needle Removal Force From Clip (N)</th>
<th>Double Needle Removal Force From Clip (N)</th>
<th>Chicken Breast Insertion Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.09</td>
<td>3.17</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>2.01</td>
<td>3.56</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>2.05</td>
<td>3.09</td>
<td>0.18</td>
</tr>
<tr>
<td>4</td>
<td>2.02</td>
<td>3.91</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>2.06</td>
<td>2.98</td>
<td>0.22</td>
</tr>
<tr>
<td>Average and Standard Deviation</td>
<td>2.046 & 0.032</td>
<td>3.34 & 0.385</td>
<td>0.198 & 0.015</td>
</tr>
</tbody>
</table>

These results were then compared to simulations of removal from real tissue.

"Low clamping force is still much larger than the force needed to remove from flesh"

TESTING

Future Work
- In-mouse testing with Dr. Kissick and make any updates that are needed.
- Possible work on a device more suited for human testing.
- Human device would likely be smaller, more ergonomic, and biocompatible.
- Possible work on an updated device that is capable of having the needles removed for prolonged testing with the fibers.

ACKNOWLEDGEMENTS

REFERENCES