Inflatable Vertebral Body Distractor

Client: Dr. Nathaniel Brooks
Advisor: Prof. Mitch Tyler
Ellis Cohen: Team Leader
Joshua Plantz: Communicator
Herman Feller IV: BSAC
Joaquin Herrera: BWIG & BPAG
Overview

- Introduction
- Project Summary
- Final Design
- Testing Protocols
- Future Work
Problem Statement

The goal of this project is to develop a minimally invasive inflatable vertebral body distractor for the lumbar region of the spine that can be easily manipulated and will not cause spinal fractures.
Background - The Spine

Anatomy

- Vertebral Body
- Intervertebral Disc
- Spinal Nerve
- Spinal Cord

Disc Degeneration

- Fluid content within disc decreases over time
- result in wear and tear
- causes tiny tears or cracks

Function

- Structural Support
- Protect Spinal Cord
Background - Surgery

Surgical Procedure:

- Insertion of operating needle
- Insertion of distractor
- Disc space is distracted
- Desired procedure
- Deflation and removal of distractor
Project Summary

- Last semester developed enlarged prototype for proof of concept
- Concept showed success
- Client has now given insertion size constraints
 - Required a major decrease in size for the inserting process
- Developed testing methods
 - Insertion
 - MTS machine
Final Design: Inflatable Vertebral Distractor

- 49 mm long, 5.1 mm diameter
- Split into two parts: sheath and load bearing
- Three device system, composed of silicone based elastomer
SolidWorks: FEA

- **Applied Loads:**
 - Internal pressure of 120 psi
 - Applied force of 143N
- **Factor of Safety** = 2.5
- **Maximum Displacement** of 0.13 mm
- **Von Mises Stress Graph**
 - Max stress of 363 psi
Final Design Continued

- Using Velowurks Floor Pump with gauge to pressurize distractor
 - Pumps up to 250 psi
 - Includes quick release valve
Testing Protocol-MTS Machine

- MTS testing to determine maximum compression load and sustainable pressure
- Loading the device in the MTS machine, a compressive load will be slowly applied as pressure is increased
- Once maximum load is determined, device will be left inflated with load to determine length of operation
Distractor Insertion Testing

- Model lumbar vertebrae with acrylic plates
- 2 acrylic plates- 10mm thick, 16mm outer diameter, 11mm inner diameter
- Model intervertebral disk with polyurethane rubber
- 1 polyurethane rubber disk- 5mm thick, 15mm diameter
- Glue acrylic plates to rubber disk
- A Jamshidi needle and cannula with 5mm inner diameter will be used for insertion
Acrylic Plate Distraction Testing

- Once load and pressure testing is complete, test distraction capability
- Add constraints (i.e. rubber bands) to acrylic plates to create a vertebrae simulator
- Testing will be done to determine the strength and number of constraints needed to simulate force of vertebrae
- Once the simulator is developed, the device will be placed in between plates and inflated to test the distraction capability
Cadaver Testing

- Once the device has passed the MTS testing and the Acrylic Plate testing, it can be tested in a cadaver
- Using a human or an animal with similar spinal column forces
- Device can be inserted and inflated and tested in real environment
- This will give best indication of conflicts that are hard to visualize now
Future Work

- Complete testing protocols
- Create acrylic plate vertebrae simulator for testing
- Locate best angle and location for device implantation
- Determine best method of device removal
Acknowledgements

Special Thanks To:

Our client, Dr. Nathaniel Brooks

Our Advisor, Professor Mitch Tyler
References

http://www.ventionmedical.com/components-and-technologies/

http://www.thebarrow.org/Education_And_Resources/Barrow_Quarterly/204837

http://www.mayfieldclinic.com/PE-ACDF.htm
Questions?