

1

RERC: Accessible Pill Dispenser/Cutter

BME 400

Fall 2007

Client: Prof. John Enderle

Advisor: Prof. Naomi Chesler

Team Members:

Joe Ferris

Bryan Fondrie

Ashley Huth

Max Michalski

2

Table of Contents

Abstract…………………………………………………………………..3

I. Background Information
 Motivation…………………………………….…………………..3
 Pill Dispensing……………………………………………………5

Pill Cutting……………………………………………………..…6

II. Design Considerations
 Problem Statement………………………………………………..7
 Essential Design Functionalities…………………………………..7
 Accessibility……………………………………………………....8
 Universal Design……………………………………………….…9

III. Alternative Designs
 Manual Measuring Dispenser……………………………………10
 PEZ® Mechanism Dispenser…………………………………..11
 Previous BME Designs……………………………………...12
 Evaluation…………………………………………………..12

IV. Final Design: UW Pillcutter
 Overview…………...…….……………………………………13
 Mixing Mechanism………………………………………………13
 Pill Drum……………………………………………………….13
 Inserts……………………………………………………......13

Motors and Mounting…………………………………………….13
Embedded Sensors….………………………………………….15

 Solenoid……………………………………………………….15
 Blade Holder……………………………………………………17
 Pill Drum Casing………………………………………………….17
 Half Pill Holding………………………………………………….18
 Interface Programming…………………………………………..18
 BASIC Stamp 2 Microcontroller………………………………….22

Prototype Costs………………………………….………………22
 Testing……..……………………………………………………23

V. Future Work…………………….…………...………………………..24

VI. References………………………………………………………...…24

VI. Appendix
 PDS…….…………………………………………………………25
 Pharmacist Interview……………………………………………..……….26
 Final Microcontroller Code……………………………………………...27
 User Interface Code…………………………………………………….36

3

Abstract
Currently, errors in medication administration and compliance are persistent problems in

home medication. There are many medication organization systems on the market that

aim to minimize errors; however, they often prove to be inadequate or expensive.

Another concern is the rising cost of prescriptions. Pill cutting is becoming a more widely

accepted as a method to decrease prescription costs; however, no medication organizer

currently incorporates an automated cutting mechanism. Over the course of the year, we

created an accessible pill dispenser and cutter capable of administering specified dosages

of pills and half pills, which are selected using electronic buttons on the front of our

device. We additionally wrote programming which can be implemented into a handheld

PC, which can be programmed by a caretaker to input several regimens for different

prescription schedules and create a text file, which contains all the information to be

implemented into the microcontroller program. We have tested our pill cutting

mechanisms and determined that on average 92% of the pill mass is retained after being

cut in halves. Future work will involve creation of a program that automatically interfaces

the input programming to the microcontroller program.

I. Background Information

Motivation

Numerous people have a difficult time taking their set dosage of pills on time. Whether

it’s forgetfulness, other priorities, a decision to omit dosage, or a physical and or

emotional handicap (1), people do not regularly adhere to their daily regimens of pill

consumption. Adherence is described as the consistency in consumption of physician

prescribed medicine at a specified time. In the United States, reported average adherence

rates for patients receiving treatment for chronic conditions were between 43%-78% (2).

In addition to patients who suffer from chronic illnesses, the elderly population has a

difficult time with adherence. Estimates suggest that only 25%-60% of the elderly

population has close to perfect adherence. One main reason there is such a low

adherence rate is due to the amount of pills that are taken. One study suggests that 25%

of the elderly population takes at least three pills a day, and in hospital settings, up to

eight pills a day (3). Also, doctors often have a hard time monitoring the adherence of

their patients. Methods such as monitoring blood levels for medicine, recording the

number of refills, and patient self-reports are often expensive, time-consuming, and

unreliable. A pill dispenser that can automatically distribute a dosage of pills at a set

period in time could drastically raise the adherence level of patients who have difficulty

maintaining a consistent dosage regimen. Furthermore, pill dispensers can be built with

the capability to record dosages that were distributed, giving doctors a better estimate of

adherence level of patients.

Physical and mental handicaps often prevent people from taking their medicine on time.

It is therefore in the best interest of the patient to construct a pill dispenser that is as

universal as possible. The goal of the pill dispenser design is to overcome limitations in

strength, coordination, sight, and hearing apparent in many users. A pill dispenser that

4

has the capability to cut a pill in half is necessary for patients who do not have the full

use of their hands. Visible and audio alarms are necessary for people suffering from

visual or audio impairment and a user-friendly interface complete with a large touch

screen is imperative for personal use of all intellectual capacities. Here is a hypothetical

client base that may benefit from a pill dispenser with these capabilities.

John Smith

Problem: John has recently been involved in a tragic car accident that left him with an

amputated left arm. He also has very little use in his right hand due to severe trauma to

his peripheral sensory neurons. John must take a variety of pain medications to combat

the phantom pain caused by neuromas that formed from injured nerve endings at the

stump site which continue to fire action potentials (4).

Solution: John can benefit from a pill dispenser that has the ability to dispense multiple

medications for his pain. Also, John may be instructed to start at reduced level of

medication so that his body becomes use to the dosage. If this is the case, John will not

be able to cut his own pills. A pill dispenser that can automatically cut his pills may

prove to be beneficial. Due to the emotional stress caused by the accident, John may take

too many pain-killers at one time, leading to an increased risk of overdosing. A pill

dispenser can help regulate the set amount of dosage administered to John at one time.

Ann Johnson

Problem: Ann suffers from a genetic disorder known as Huntington’s Disease.

Huntington’s Disease results from genetically programmed degeneration of neurons in

certain areas of the brain. This degeneration causes uncontrolled movements, loss of

intellectual faculties, and emotional disturbance (5). Although her condition is mild, the

illness occasionally disrupts her coordination and causes tremors (6). Ann must take

medication to suppress the disease. Side effects of the medication include fatigue and

restlessness.

Solution: Ann could benefit from a pill dispensing device with an interface that is

physically easy to use with large buttons which require little coordination to use. Also, a

simple interface that requires little input from the user may benefit Ann because of her

increased restlessness and inability to concentrate for extend periods of time.

Furthermore, a device with a loud alarm indicating scheduled dosage times could

potentially help if Ann is feeling drowsy. An automated pill cutter may also assist Ann

with obtaining half pill dosages.

Lu Yang

Problem: Lu suffers from Anterograde amnesia as a result of a motorcycle accident at age

25. Anterograde amnesia is a form of amnesia where new events are not transferred to

the person’s long-term memory. People who suffer from this illness remember memories

of events before the accident but cannot form any new memories. Lu severely injured his

hippocampus in the accident, the long-term memory center in the brain (7). As a result of

the accident, Lu cannot remember to take his daily dosage of medication. Other than this

condition, Lu is in fine health.

5

Solution: Lu could benefit from a pill dispenser that can be set on a monthly schedule to

deliver his daily set dosage of pills. With visual and audio reminders, Lu will be

informed every day that he does in fact take medication. Furthermore, a pill dispenser

that has the ability to contact off-site caregivers once dosages are running out can help

caregivers assist in refilling medications for Lu.

Gretchen Ramsel

Problem: Gretchen is a 74 year old grandmother that spends the majority of her time

house-sitting for her widowed granddaughter’s children. Gretchen is lively and in

relatively good health. She does, however, take medication for her high blood pressure

and limited arthritis in her fingers. She also takes a calcium tablet each day to strengthen

her bones. Gretchen lives a hurried life-style which is centered around her grandchildren,

and she often forgets to take her necessary medication. She also is farsighted which gives

her trouble making out small print.

Solution: Gretchen could benefit from a pill dispenser with audible and visual alarms to

remind her when to take her set dosage of pills each day. Moreover, Gretchen could

benefit from an interface with large fonts and easy-to-press buttons so that she has no

problem reading and programming the pill dispenser. With her arthritic fingers, cutting

pills may prove to be a challenge. A pill dispenser capable of automatically cutting pills

could save Gretchen a lot of pain, frustration, and time.

Pill Dispensers/Organizers
Individuals taking multiple medications require clear-cut organization of pills and strict

adherence to an appropriate medication schedule. The most basic organization product

on the market today is a weekly medication organizer. Weekly organizers are most

commonly recognized in the form of Figure 1 where one plastic container has seven

separated compartments for pills (8). In addition to only holding a week’s worth of

medication, these organizers also require self-loading of pills by the patient and do not

provide any alerts to remind users to take their medication. The simplicity of this product

allows for a low market price ranging from $5 - $60 (8). Prices increase considerably for

6

more complex pill organizers with added features such as automated pill dispersal and

alert systems that monitor a patient’s adherence to medication regimens. At the

appropriate time, products such as those shown in Figure 2, will sound an alarm to alert a

user that it is time to take their medication (8). Many of these products are fairly new to

the market and despite being more effective than earlier organizers, they still require self-

loading of medication and demand prices upwards of $1500.

Pill Cutting
Current pill organizers have not integrated the ability to split pills. Pill cutters make up

an entirely separate market. There are multiple reasons why pill cutters are utilized.

Some drugs are produced in doses that fail to meet patients’ medication regimens;

therefore, these drugs must be cut in half. Furthermore, increasing prices of medication

prescriptions is an issue causing many patients to turn toward pill cutting. Often the same

medication of two different sizes has the same co-pay. To avoid the extra cost of paying

multiple co-pays for low dose prescriptions, people often opt to cut pills. Most pill

cutters are handheld devices, small in size and operable by dexterous persons. Figures 3

& 4 depict current pill cutters that share similar designs and are priced under $20 (8). Pill

cutters generally consist of a holding area for one medication and an area in which the

patient positions the pill under a cutting apparatus. The cutting area is usually a surface

with a high coefficient of friction, such as rubber, to prevent the pill from slipping. Most

cutting mechanisms use a thin razor blade and rely on the user’s own strength to raise and

lower the blade for cutting. A unique feature to be considered in possible designs is a

tapered blade that applies varying pressure on the pill during cutting to alleviate stress

concentrations and provide a cleaner cut.

Figures 3 & 4: Conventional pill cutters

Figure 1: Weekly pill organizer Figure 2: Automatic pill dispenser/organizer

7

Even and accurate cuts are essential requirements for pill splitting devices. Many pills

are scored for cutting purposes with a depressed line across the middle. However, the

material of pills does not always ensure the pill will separate into two equal halves.

Some pills are not made to be cut at all, and therefore should not be subjected to a blade

at any time. Another element of pill cutting to be considered is the residue left behind

after a cut. If too much is lost to residue, the “halves” may not contain enough

medication to be effective. Using a rotating blade, despite possibly making a cleaner cut,

is not feasible. Mixing pill residues could also have harmful effects on patients, and

separate blades in isolated cutting containers should be used to cut different medications.

One blade could be used if a cleaning mechanism was integrated, but any such

mechanism should completely remove all residues and not leave behind any trace of

cleaning substances.

II. Design Considerations

Problem Statement

Medication administration regimens cause significant dispensing and adherence issues

for many individuals, often compounded by the necessity of slicing pills in half. In order

to improve the living conditions of those suffering from these ailments, we aim to build a

pill dispenser/cutter that will administer a set dosage of pills. Specifically, it should be

able to dispense the same dosage of half, one, or two pills at appropriate time intervals, as

specified by the pharmacist. Additionally, the device should automatically alert the client

when to take a pill, and not release any pills except during the set dosing period.

Essential Design Functionalities
 In order to generate a set of guidelines for the device, Product Design Specifications

(PDS) were developed and can be found in the Appendix. The PDS is an outline for the

functionality, operation, and design criteria for the device.

A key function of the design is the ability to dispense set doses of medication consisting

of a combination of half and full pills based on the programmed schedule. In order to

administer half doses, the design will be capable of cutting pills in half mechanically.

Additionally, the dispenser will automatically alert users when to take pills and inform

personnel offsite if doses have been missed.

Additionally, the automated pill dispensing device should be easy to use by persons with

diverse capabilities and safely assist with dispensing a single dosage during the

prescribed interval. It should remind users to take their medications, record what

medications have already been dispensed, provide multi-modal indicators of current

status, and only dispense the pills within the specified time windows each day. The

device should also alert offsite medical personnel if a dose is missed.

8

Accessibility

Accessibility is a key design constraint considered to ensure our device can reach a

diverse population of medical patients, particularly older patients and users with

disabilities or activity limitations. Regardless of the disability it is essential that all users

are able to perceive the information presented by the product, successfully operate the

device, understand the device and its outputs, and be able to navigate the product (4).

Moreover to achieve accessibility, the design should strictly adhere to ADA

specifications and follow these recommendations (9):

To accommodate users who may be blind or have visual impairments:

Recommendations

a. Sans Serif font should be used

b. Text should be larger and have broad lettering

c. Both upper and lower case lettering should be used

d. Sufficient spacing between letters, words, and lines of text should be

provided

e. Screens should have high contrast and resolution

f. Supplementary auditory information should be provided

g. Glare on screen should be minimized

h. Tactile indicators should further aid those with visual impairments

Users may be blind or have uncorrectable limitations including loss of visual field or

temporary visual impairments such as low lighting or an obstructed line of sight (10).

Thus, optimizing the visual components of the device is essential for increasing clarity

and visibility for those with visual impairments. It is also recommended that the device

is not overly dependent on visual information. Instead, redundancies either auditory or

tactile indicators should be incorporated to provide the user the same information as

displayed in text.

To accommodate users who may be deaf or hard of hearing:

Recommendations

a. Audio outputs should be have incremental controls

b. Auditory default volume should be reasonably loud

c. Redundant visual and tactile information for auditory content should be

provided

Users may be deaf or hard of hearing. The most common approach for addressing this

issue is incorporating redundant visual and tactile information for audio content. Alarms

for the device could provide an adjustable audible tone, a flashing visual display, and a

vibrating mechanism to insure the user is successfully alerted (10).

To accommodate users who may have fine motor impairments, limited reach, strength, or

control:

Recommendations

a. Device should be operable with one hand

b. Device should be operable with either right or left hand

c. Force required to activate controls should be minimized

d. Controls should require general motion, rather than precise motions

9

e. Users should not easily be able to accidentally activate functions

Users may have motor disabilities that can affect their interactions with a device. These

disabilities could include decreased fine motor controls, decreased grip strength, inability

to exert force, and inability to perform two-handed tasks (9). The design of the device

should minimize the motor demands of the device and allow for alternative voice

activated controls.

To accommodate users who may have cognitive or memory impairments:

Recommendations

a. Prompts should be provided for user

b. Language should be simple

c. Redundant labels should clearly communicate function

d. User should be able to recover from errors

e. User should be able to easily navigate the produce

Users may have cognitive or memory impairments; thus, alarms and alerts should be

incorporated so that minimal memory is required.

Universal Design Principles

Universal design concepts are broader than accessible design concepts, as they aim to

improve the design for everyone, not just people with disabilities. Thus the aims of

universal design concepts are slightly different. Listed below are main universal design

principles that have been outlined by Connell, et Al. and are applicable to our design.

Equitable and Flexible Use

The design should provide both equitable and flexible use. The design should be able to

provide the same means to users of all abilities and be able to accommodate individual’s

preferences and abilities. Thus the design could consist of alternative operational

methods to satisfy a wide range of individuals, both disabled and not.

Simple and Intuitive

The design should also be simple and intuitive in multiple ways. A user of any

experience, knowledge, or ability should find the design easy to understand. In our

design this would consist of including effective prompting and feedback during

information input and machine use.

Perceptible Information

The design should present information in a perceptible manner. All necessary

information would be effectively communicated to the user through the design. In our

design following pill dispensing alters should be redundantly presented in a clear manner.

This would include both audio and visual alerts.

Tolerance for Error

The design should not tolerate error. The design should incorporate fail safe features,

provide alerts for hazards or errors, and isolate hazardous elements. The mechanism to

cut pills should not be accessible by a regular user. The design should also incorporate

sensors to provide multiple checks that the device is functioning properly. In the case of

10

an error, alerts should inform the user immediately and offer alternatives to resolve the

problem.

Low Physical Effort

The design should be used efficiently and comfortably by the user. Since the pill

dispenser is automated it will naturally address this design consideration.

Size and Space for Approach and Use

The design should be of an appropriate size for all users. Moreover there should be

sufficient space provided for reach and manipulation regardless of the user’s body size,

posture, or mobility. In particular, the site from which pills will be retrieved should be

adequately designed to accommodate all potential users.

By addressing many of these design criteria, a universal and accessible device can be

produced for a wide user base.

III. Alternative Designs

Manual Measuring Device

Overview

The manual measuring device (Figure 5) is set up to gauge the dimensions of each

medication in order to generate a dispensing device that properly aligns pills for cutting

and dispensing. Before loading the entire prescription into the pill holding funnel, the

first pill is set onto the measuring platform. The platform mounting panels are then

adjusted by the user to touch each edge of the pill. These mounting panels are

mechanically linked to the dispensing tube which would adjust so that pills are only

capable of falling in the desired vertical orientation. Additionally, the height of each pill

is known from loading on the measuring

platform which adjusts the height of the

cutting blade to half of the total pill height.

Pros

 Manual measurement allows for

precise cutting of a large variety of pills

due to the initial pill height measurement.

Additionally, this device would not

require a large amount of counter space in

home usage due to the vertical orientation

of each unit.

Cons

 Although the device can be

adjusted to multiple pill shapes and sizes it

is labor intensive for users and requires

understanding of how the measuring

platform is used which is not completely
Figure 5: Manual measurement design

11

intuitive. Furthermore, it would be difficult to prevent pills from jamming within the

tight fitting dispensing tube which could prevent pills from be dispensed.

PEZ® Pill Dispenser Device

Overview

Pills of known size can be loaded and

dispensed similar to the mechanism of a

PEZ® dispenser (Figure 6). Instead of

needing a variety of pill dispensing

holders for the various sizes and shapes of

pills, this universal holding mechanism

was designed. Figure 7 is a schematic of

the pill holder looking longitudinally

down the pill holding shaft. The pill (1) is first placed up against the back stop (2). The

blocking arms (3) extend the full length of holding shaft can and can be adjusted in the

directions shown by the arrows. Once the pill is fitted, the arms then lock into place at

their respective positions. Various sizes of pills can use the same holders instead of

making separate holders for each different pill.

Pills are packed into the holding shaft, which is

then placed into one of four loading docks in the

pill dispensing console. At the end of each loading

dock, a small spring would be used to advance

one pill at a time.

Pros

The PEZ® pill dispenser design could effectively

distribute one pill at a time which is an important

component of the overall design. This deign also

makes it possible to add multiple PEZ® pill

dispenser shafts for different kinds of pills. Each

holder acts independently from the other holders,

so the whole pill dispensing device can be set up

for multiple PEZ® pill dispenser holding shafts.

Also, with the use of arm blockers, the PEZ® pill dispenser is able to accommodate any

size pill that needs to be dispensed. This is an important attribute to the overall design

because it eliminates the need for custom-designed holders for each individual pill type.

Cons

One problem is the overall complexity of the design. The mechanical arm blockers will

all need to be machined and then placed on tracks for movement. Furthermore, the

pushing mechanism that advances the pill will some need to accommodate different pill

sizes. A cutting mechanism is not incorporated into the PEZ® pill dispensing design at

this time. Finally, this design involves extensive interaction between the care-giver and

the device. Individually loading pills may take a considerable amount of time. If our

device is too complicated, it may require extra training for the care-giver to use our

design.

Figure 6: PEZ dispenser design

Figure 7: Longitudinal view of

PEZ dispenser design

12

Previous BME 400 Dispensing Design

Overview

A previous BME 400 design team

utilized a toothpick-type dispensing

mechanism. This device uses a rotating

pill drum that has been cut on one edge to

the shape of the pill being dispensed.

The pill drum is mounted to a stepper

motor which is rotated below the outlet

of a pill funneling component designed to

position pills to drop into the pill drum as

shown in Figure 8. Multiple

interchangeable pill drums were created

to facilitate the dispensing of a variety of

pill shapes and sizes (11).

Pros

A clear advantage of a toothpick-

mechanism is the testing performed by

the previous group that demonstrated individual pills are regularly dispensed within three

rotations of the pill drum. Additionally, the interchangeable pill drums increased the

universality of the design to work with numerous types of medication. Finally, the

computer code for rotating the drum can be easily written and executed using a BASIC

STAMP 2 microcontroller.

Cons

While the previous design team’s dispensing mechanism has been shown to adequately

dispense pills, there is no component for pill cutting that is a major component of our

design specifications. Additionally, use of interchangeable pill drums requires the user to

remove and replace the drum onto the motor that may lead to problems with alignment.

Since there is no consideration for pill cutting, the design lacks concern for pill residue

after cutting and mechanisms for cleaning or replacing cutting blades to prevent

contamination.

Evaluation

While each design has advantages and it is difficult to predict which would generate the

best end prototype to meet our design criteria, our final design is the continuation with

modification to the previous BME 400 project. Each device presented many mechanical

challenges which must be overcome but the pill drum mechanism has been shown to

successfully dispense individual pills (11). Interchangeable inserts for each pill size are

more feasible and intuitive for inexperienced users to successfully load medication as

opposed to measuring each medication and setting up each module for a different pill.

With a proven mechanism to dispense individual pills, increased attention can be directed

towards a mechanism for pill cutting which is an important component of the design

criteria not addressed by the previous pill drum design.

Figure 8: Previous BME 400 design

13

IV. Final Design: UW-Pill Cutter
While the main basis of our design still centers on a rotating drum to catch and dispense

pills, with a solenoid to drive a blade to cut pills, many changes have been made. In the

following sections appropriate changes will be explained in depth and justified.

Mixing Mechanism

The mixing mechanism has been created to easily facilitate catching pills by the pill

drum. The pill drum rotates into the internal volume of a funnel which is used for pill

storage. The funnel has been designed to match the curvature of the pill drum so that it

protrudes into the funnel which assists in catching pills as it rotates below them.

Additionally, a continuous servo motor is used to rotate our vertical stirring mechanism

within the pill funnel. The stirring mechanism consists of four bundles of soft brush

bristles, which are oriented in a cross shaped pattern and spin directly above the pill

drum.

Pill Drum

The pill drum is composed of a Delrin rod which has been modified extensively to

accommodate many facets of our design. Delrin rod was chosen due to its inherent ability

to serve as dry lubricant, which prevents friction while rotating within the casing and

easily dispenses pills after catching them. Each end was precisely machined to

accommodate the addition of stainless steel bearings which also prevent friction during

rotation. Further, the bearings support the pill drum during pill cutting which exerts a

strong force on the center of the pill drum. A small slit was machined about the center

line of the pill drum that prevents the cutting blade from striking the pill drum which

could cause sticking and dulling of the blade. Additional modifications were made to the

pill drum which allowed for sensors to be embedded, inserts to be added, as well as wires

drawn through the center of the pill drum and out through the center of a bearing.

Inserts

Accommodating pills of different sizes and shapes was a main design criterion. Each

insert features a different pill cutout and was split down the middle so that the blade

could easily pass through. The bottom of the insert was milled so that the buttons could

be easily attached to the bottom of each insert. Inserts use a snap button mechanism to

become securely fastened to the pill drum for a temporary period of time. A tunnel was

also cut through the x axis of the inserts so that light from the IR sensors can pass through

and determine if a pill has been caught.

Motors and Mounting

Standard and continuous servo motors are used to control various physical mechanisms

of the final prototype including pill mixing, rotation of the pill drum, and opening and

closing of the half pill holder trap door. Both continuous and standard servo motors have

the ability to rotate clockwise and counterclockwise. Their rotation is controlled by 1.5

micro-second current pulses that are sent to the motor’s signal line across a wide range of

14

bandwidths. The technical and physical specifications of both motors are listed in Figure

9. The I/O pin on the microcontroller controls the motion of the servo motors by the

PULSOUT command in PBASIC coding language. The three variables following the

PULSOUT command are the microcontroller pin number, the number of pulses being

sent, and the bandwidth of the signal over which each pulse is sent. Standard and

continuous servo motors are directed differently by this code.

Standard servo motors receive the short pulses of current and rotate to a specific position

within an 180˚ range. Futaba’s standard servo motors can operate on bandwidths in the

range of 250 – 1250 which correlates to positions around a half circle. Bandwidths

outside the specified range can do damage to the motor and decrease its useful life. The

number of pulses sent to the standard servo motor controls how long the motor will hold

its position. These intrinsic properties of the standard servo motor make it perfect for

controlling the precise rotation of the pill drum for pill sensing, cutting, and whole and

half pill delivery, as well as, for control of the opening and closing of the half pill

holder’s trap door.

Continuous servo motors are capable of continuous 360˚ rotation and react differently to

the previously explained PULSOUT command. The bandwidth variable no longer

controls the position of the servo motor, but instead determines the speed by which it

rotates. A bandwidth of 750 defines an approximate starting point that correlates to a

speed of 0 rpm. Adjusting the bandwidth up from 750 increases the speed clockwise and

adjusting the bandwidth down from 750 increases the speed counterclockwise. The

number of pulses sent to the motor controls the amount of time over which these rotations

will last. Our prototype uses a continuous servo motor to mix the pills clockwise and

counterclockwise at varying speeds so that one pill will fall into the pill inserts to begin

the pill delivery process.

 Futabay Standard Servo Futaby Continuous Servo

Power 6 VDC max 6 VDC max

Speed 0 to 180 degrees, 1.5 second average 60 rpm

Weight 45.0 grams/ 1.59 oz 45.0 grams/ 1.59 oz

Torque 3.40 kg-cm/ 47 oz-in 3.40 kg-cm/ 47 oz-in

Size (mm) 40.5x20.0x38.0 40.5x20.0x38.1

Size (in) 1.60x0.79x1.50 1.60x0.79x1.51

Figure 9: Servo motor specifications

15

Sensors embedded in pill drum

Once a pill has landed in the correct orientation of the pill inserts, it is necessary to

communicate this information to the microcontroller. In order to alert the program that a

pill was caught, a pair of infrared sensors was imbedded in the pill drum. The infrared

sensors were bought from Radioshack, and they include a light emitting infrared diode

and a phototransistor receiver. The infrared LED emits a 940 nm electromagnetic wave

between 40-150 mA with a voltage between 1.3-20 VDC. The phototransistor receives

this wave between 20-150 mA with a voltage between 1.3-20 VDC. We connected this

sensor pair in the circuit shown in Figure 10.

The microcontroller can read inputs on a simple high/low voltage scale between 0-5 V

with a threshold of 1.5 V. This means that if a signal between 1.5V to 5V is being sent to

the I/O pin of the microcontroller, the PBASIC language will interpret this as a 1. In the

same way, if the output voltage is between 0-1.5V, the microcontroller interprets this as a

0. When there is no pill in the inserts, the signal sent to the I/O pin of our microcontroller

reads the number 1, or high. When a pill has fallen in to the pill inserts, the pathway

between the emitter and the detector is broken and the microcontroller reads this broken

signal as 0, or low. Having these sensors allow us to place checks in our program that

allow us to retry catching a pill or signal error messages when a pill has not been caught

by the pill inserts.

Solenoid

A non-rotating razor blade should be used for cutting pills in half. Lining up the blade

with the center of pills is easiest when the motion of the blade stays in a constant linear

plane. A linear push solenoid moves straight in one direction when excited by an

electrical current. The solenoid is a “modified electromagnet” that consists of two major

parts, a central core or armature and a coil of wire that surrounds the armature (11).

Sending current through the wire coil creates a magnetic field with strength directly

related to the number of wire coils. More wire coils create a stronger magnetic field. The

magnetic field generates force that pushes the central core up through the solenoid. The

distance the armature travels is referred to as the solenoid’s stroke and generally ranges

from 0.5” to 1.5”. Once the wire coil is excited by the current and the armature pushes

forward in a linear motion, it will remain at its excited position until the current source is

turned off. Switching off the current allows the solenoid’s armature to fall back down to

its original position which is normally regulated by a spring mechanism.

Figure 10: Servo rotation diagram

16

Sealed solenoids are enclosed in durable casing to protect the wire coils from the external

environment which extends the life of the solenoid. With a maximum stroke of 0.8” the

solenoid is able to generate varying amounts of force depending on the duty cycle and stroke

length. The range of these forces are listed below. The solenoid requires a 12 volt DC

source that can supply over 7 amperes of current to the wire coil and create a strong enough

magnetic field to drive the armature. Exciting the solenoid using the Parallax Basic Stamp 2

microcontroller requires the use of an industrial relay. Relays are switches that can handle

large amounts of current running through an internal coil. The relay switch controls whether

a circuit is complete or not and is activated or switched on by very low voltages and currents.

Since the microcontroller is only a 5 volt source, a 5 volt relay must be used. The current

needed to excite the relay’s internal coil is 40 milliamps. One I/O pin on the microcontroller

can source a maximum of 50 milliamps, so only one pin must be used to provide sufficient

current to the relay. Running the solenoid from the microcontroller allows for simple on/off

control. Exciting the appropriate pin excites the relay creating a closed circuit and activating

the solenoid’s linear stroke. Conversely, turning the same pin off switches the relay again,

making the solenoid circuit incomplete and allowing the armature to return to its resting

position.

There are two limiting factors when considering the power of this low profile solenoid. The

first of these factors is the aforementioned stroke of the solenoid. As the stroke of the

solenoid increases, the maximum power of the solenoid decreases in linear proportion. With

this in mind, the stroke length used in the prototype is 0.25 in. The cycle by which the

solenoid is energized and de-energized is referred to as the duty cycle and is the second

limiting factor of the solenoid’s strength. The list below shows the possible duty cycles of the

solenoid and the correlated maximum power that can be generated at various stroke lengths.

Four duty cycles exist for the solenoid distinguished by the approximate amount of time that

the solenoid will remain on during one excitation. The percentage which is associated with

each duty cycle is calculated by the following equation:

Duty Cycle = [On time / (On time + Off Time)] * 100%

On Time is the amount of time the solenoid stays energized during one excitation and Off

Time is the amount of time the solenoid stays de-energized between excitations. In order to

make an accurate and complete cut our solenoid will have an On Time of approximately three

seconds and depending upon the needs of individual users varying values for the Off Time.

However, it is reasonable to assume users will require only one cut of a pill at any specific

dosing period and so the Off Time will be considerably longer than the On Time. If multiple

pills need to be cut at one dosing period the amount of time between cuts should be over 27

seconds to maximize the power output of the solenoid. This Off Time value combined with

our On Time value of 3 seconds, yields a Duty Cycle of 10% or as described below a Pulse

Duty Cycle.

C = Continuous (100%) Duty Cycle, Maximum On-Time = Infinite

Approximate Input Power = 20 Watts
Force at 0.05" (1.3 mm) stroke: 720 Oz (20412 gr)

Force at 0.25" (6.4 mm) stroke: 144 Oz (4082 gr)

Force at 0.50" (12.7 mm) stroke: 48 Oz (1361 gr)

17

I = Intermittent (50%) Duty Cycle, Maximum On-Time = 230 Seconds

Approximate Input Power = 40 Watts
Force at 0.05" (1.3 mm) stroke: 960 Oz (27216 gr)

Force at 0.25" (6.4 mm) stroke: 288 Oz (8165 gr)

Force at 0.50" (12.7 mm) stroke: 80 Oz (2268 gr)

Force at 0.80" (20.3 mm) stroke: 11 Oz (312 gr)

L = Long Pulse (25%) Duty Cycle, Maximum On-Time = 90 Seconds

Approximate Input Power = 80 Watts
Force at 0.05" (1.3 mm) stroke: 1200 Oz (34020 gr)

Force at 0.25" (6.4 mm) stroke: 530 Oz (15026 gr)

Force at 0.50" (12.7 mm) stroke: 170 Oz (4820 gr)

Force at 0.80" (20.3 mm) stroke: 30 Oz (851 gr)

P = Pulse (10%) Duty Cycle, Maximum On-Time = 30 Seconds

Approximate Input Power = 200 Watts
Force at 0.05" (1.3 mm) stroke: 1730 Oz (49046 gr)

Force at 0.25" (6.4 mm) stroke: 1040 Oz (29484 gr)

Force at 0.50" (12.7 mm) stroke: 416 Oz (11794 gr)

Force at 0.80" (20.3 mm) stroke: 96 Oz (2722 gr)

Blade holder system

The blade holder system was created to allow precise linear motion of the blade without

physical attachment to the solenoid. This would allow a single solenoid coupled with a

rotational motor to be used by multiple pill drum modules. The solenoid must be

separate from the blade in order to prevent cross contamination of several pill types. The

blade holder is a modified #3 X-ACTO
®
 blade handle and #11 knife. The X-ACTO

®

blade handle allows easy changing of blades after one has become dull. The plastic grip

of the blade handle was removed and the metal blade handle was mounted into a ¾” x ¾”

x 2” plastic guide. The guide is contained within a plastic housing that only allows linear

motion as well as safely prevents any access to the blade without removing two set

screws for interchanging blades. Also contained within the plastic housing is a set of two

springs which retract the blade system from the pill drum after the cut has been made and

the solenoid is relaxed. Two springs were used so that initially the resistance to motion is

a long spring with a small stiffness coefficient followed by a short stiff spring which

provides enough force to remove the blade from the pill drum and prevent sticking.

Pill Drum Casing

The pill drum sits in a PVC casing shown in Figure 11. The pill drum casing consists of a

half-cube with a cylindrical area bored out of it in which the pill drum rests. The

cylindrical area where the pill drum rests is a smooth surface to reduce friction. An area

of the cube has been cut out for the insertion of the cutting blade. There is also a hole cut

in the side of the casing to allow for wires from the sensors in the pill drum to be drawn

out. Finally, two holes are notched out of the inside of the cylindrical bore, one at 75

degrees from the top (half pill notch) and the other at 180 degrees from the top (half/full

pill notch). As the pill inserts in the pill drum spin past the notches, the pills are able to

18

fall into either the half pill holding container or the half/full pill collecting dish. The

other half of the cube is integrated with the pill funnel. The top half rests on two pins that

protrude from the bottom half of the cube.

Figure 11: Pill drum and casing

Half pill holding container

After a pill is cut in half, one of the halves needs to be separated and stored. When the

pill drum spins past the half pill notch in the pill drum casing, a half pill falls into a pill

holding container. This container consists of a box with a downward slanting bottom.

When the pill is dropped into the container, the slanted bottom of the box directs the pill

to a trough where the bottom meets a side trap door. Across the trough is a set of infrared

sensors (the same kind used in the pill drum). When the pill comes to rest between the

trap door and the bottom, the IR pathway is broken and the sensor reads low. The next

time a half a pill needs to be delivered for a dosage, the program checks the half pill

sensor. If the sensor reads low, the program knows that there is a half pill in the

container that can be delivered. The trapdoor works on a hinge with a standard servo

motor (the same kind used to rotate the pill drum). Once the program reads low from the

IR sensor, it sets in motion a servo motor that cranks a wire connected to the trap door,

raising it, and dispensing the half pill into the final collection dish.

Interface

Our user interface program was created to be simple for care providers to operate. This

program requires the user to go through a series of questions to insert pertinent

information about the patient’s pill regimen. All information input is stored to be later

called by the program which operates the mechanics of the device. Information included

is times per day to dispense the pill, each time of day to dispense the pills, and number of

pills that need to be dispensed at each time. Moreover, information is added about the

number pills that were inserted into the device by the care provider. As pills are

dispensed the number of pills in the device can be determined using the input values and

subsequently a care provider can be alarmed that more pills need to be inserted when they

are running low.

19

Depicted above is the main programming screen that will contain a list of pills and their

respective input parameters after data has been entered. Also from this page you can

choose to add a new pill or delete an existing entry.

If add is chosen the user will then be asked to enter a simple description of the type of pill

they are adding. Input suggestions include type and size of pill (ex. 500mg Vitamin C).

20

Following the user will identify the quantity of pills that they have inserted into the pill

funnel. This entry will later be used to calculate the number of pills that are left in the

funnel after each dosage has been dispensed.

Since some pills are only intended to be taken once a week, our device provides the user

with the options to dispense a pill daily or just once a week. Depending on their selection

the program will provide different question prompts for Track 1 (daily) and Track 2

(weekly).

Pills are frequently taken more than once per day. Thus, our program allows the user to

select how many times a particular pill should be administered daily. Following this

selection the following two screens will appear to allow the user to indicate when pills

should be dispensed during the day and how many pills should be dispensed at each time.

21

If Track 2 is selected the first prompt will determine the day of the week that the pill

needs to be taken, followed by the time of day and number of pills screens as seen in

Track 1.

22

The final screen that will be presented to the user will be a confirmation screen that will

display the user’s selections. At this point if selections are incorrect they will be able to

select the back button and modify their selections.

Basic Stamp 2 Microcontroller

The physical components of our prototype are all directed by the Parallax Basic Stamp 2

Microcontroller (BS2). The BS2 is the intelligence of the prototype design and is

programmable using its unique version of BASIC code: PBASIC. Code written on a PC

in the Basic Stamp Editor program can be transferred to the BS2 by means of a USB

serial port that sits on the BS2’s project board. Once transferred, a single program can be

stored in the BS2’s Electrically Erasable Programmable Read Only Memory (EEPROM).

This feature allows users to turn the BS2 on and off and be able to run the saved program

without having to reconnect the USB and reload the data. The BS2 features 16

Input/Output (I/O) pins capable of controlling signals to peripheral physical elements and

exchanging or inputting data from those elements back to the microcontroller. Each I/O

pin on the BS2 controls a single physical element of our prototype: sensors, motors,

speakers, and buttons. The project board of the BS2 contains a 5 VDC regulator that

allows connection of a 12 VDC power source to the BS2, of which only 5VDC is actually

supplied. A voltage of this magnitude only allows minimal amounts of current to be

sourced and sunk by each BS2 I/O pin. The maximum current that one pin can source to

or sink from a peripheral element is in the range of 25 – 50 mA. The voltage required for

activating just one pin (threshold voltage) is 1.5 V. Code of the final PBASIC program

stored on our BS2 is provided with annotations is located in the appendix.

Prototype Production Costs

Listed below are the costs of components used to produce our working prototype.

Item Company Quantity Unit Price Cost

IR Sensors and Detectors RadioShack 2 $3.49 $6.98

Piezo Buzzer RadioShack 1 $11.49 $11.49

110 Watt AC-DC Power Adapter Ituner Network Corp 1 $35.95 $35.95

5 Volt REED Relay RadioShack 5 $2.99 $14.95

Wood Home Depot 2 $10.49 $20.98

Microcontroller Startup Kit Parallax 1 $99.95 $99.95

Razor Blade Set Ace Hardware 1 $20.49 $20.49

Standard Servo Motor Parallax 2 $12.95 $25.90

Plastic Scraps Laird Plastics 1 $50.00 $50.00

Solenoid Electromechanic 1 $105.49 $105.49

Misc Electrical Materials RadioShack 1 $30.00 $30.00

Misc Hardware Ace Hardware 1 $20.00 $20.00

 TOTAL $442.18

23

Testing and Validation

In order to measure the success of our pill cutting technique we focused on two different

measurements. The first measurement we took was the average mass of half pills. This

measurement was taken to determine the amount of variability inherent to the cut. As

seen in Figure 12 half pills varied about 5 mg either way, demonstrating that pills were

not cut exactly in half. The second measurement that was taken was the total mass of the

pill after the cut. This measurement was compared to the mass of the pill prior to cutting

to demonstrate the mass lost following cutting. As seen in Figure 13, there was some

loss in mass, however this is typical for hand held pill cutters as well. It should also be

noted that this numbers is specific to the 500 mg Vitamin C pills that were cut, a pill with

a different composition or thickness may respond differently when cut.

Another experiment that was

performed involved the accuracy of

dispensing a set amount of pills in a

row. A total of twenty different trials

were performed, ten for the full pill

and ten for the half pill. At the start

of each trial, six full pills were loaded

into the pill funnel. The program was

run and observations were made as to

whether a pill has been dispensed.

The experimental results can be seen in Figure 13. In theory, one would expect a total of

six full pills delivered per trial for the full pill, and a total of twelve half pills delivered

per trial for the half pill. In actuality, this was not the case. There was some error

involved with the experiment, which we deemed Type I and Type II errors. Type I error

involved the failure of a full pill to be caught in the pill inserts after three consecutive

tries. Type II error refers to the failure of our device to dispense a pill/half pill after three

consecutive tries. From the experimental data, it can readily be seen that full pill

dispensing accuracy was perfect for 70% of its trials and 60% perfect for the half pills.

Type I errors were due to either the

pill being awkwardly positioned in

the pill inserts, or the mixing

mechanism unable to guide a pill

into the inserts. Whereas, Type II

errors were due to frictional

complications after the pill had been

cut. In our program, however, we

have anticipated the likelihood of

such errors and placed alarms to

indicate that one of these types of

errors had occurred.

Figure 12: Half pill mass testing

Figure 13: Validation Testing

24

V. Future Work

Much needs to be done to successfully address all of the design constraints. We need to

create a more compact set up which contains at least four different pill dispenser

modules. Once the four different modules are put together, we will need to interface the

input programming with the microcontroller program. Following construction of our final

prototype consisting of four modules tests that are focused on the user should be

conducted to ensure that our device is accessible to a variety of individuals. To perform

this type of assessment, an IRB would be required and enlisting a sample population that

is representative of our projected user base would be necessary. To obtain an IRB we

would need to create a protocol that informs our participants and maximizes their safety.

Both quantitative data on the dispenser’s performance and qualitative data focused on

overall accessibility of the dispenser could provide insight into both the benefits and

shortcomings of our design.

VI. References
(1) Osterberg, Lars, and Terrence Blaschke. “Adherence to Medication” Drug

Therapy 353: 487-497.

(2) Smith, D., Compliance Packaging: A Patient Education Tool, American

Pharmacy, Vol. NS29, No 2 February 1989.

(3) Salzman, C. “Medication Compliance in the Elderly.” J Clin Psychiatry 56

(1995): 18-22.

(4) 4 Ramachandran, V. S. & Hirstein, William (2008), "The Perception of Phantom

Limbs: The D. O. Hebb Lecture", Brain 121 (1): 1603-1630.

(5) http://www.ninds.nih.gov/disorders/huntington/huntington.html.

(6) http://www.mayoclinic.com/health/huntingtons-disease.

(7) http://neurology.health-cares.net/anterograde-amnesia.php.

(8) “E-pill Medication Reminders”. <http://www.epill.com>. 2004.

(9) “Americans with Disabilities Act Homepage”. <http://www.ada.gov/>. Oct 2,

2007.

(10) “Accessibility”. <http://www.ahrq.gov/accessibility.htm>. Oct 4, 2007.

(11)www.theamdd.com.

(12) Personal Interview with Ken Oneill (UW-Pharmacy) October 25, 2007.

http://www.epill.com/
http://www.ahrq.gov/accessibility.htm
http://www.theamdd.com/

25

VII. APPENDIX

PDS

May 11, 2008

Product Design Specifications

Title: Accessible Pill Dispensing/Cutting Device

Team:
Max Michalski- Team Leader

Ashley Huth- Communicator

Joseph Ferris- BWIG

Bryan Fondrie- BSAC

Function: Dispensing set doses of medication from half to double doses of pills based on

the programmed schedule. In order to administer half doses, the design will be capable of

cutting pills in half mechanically. Additionally, the dispenser will automatically alert

patients when to take pills and inform personnel offsite if doses have been missed.

Client requirements: The automated device should be easy to use by clients with

diverse capabilities and safely assist with dispensing a single dosage during the

prescribed interval. The prototype should be able to dispense any of 1/2, 1 or 2 pills at a

time and be able to cut pills in half if required for 1/2 pill dosage. It should remind users

to take their medications, record what medications have already been dispensed, provide

multi-modal indicators of current status, and only dispense the pills within the specified

time windows each day. The device should alert someone offsite if a dose is missed. The

prototype can be larger than a final product for demonstration purposes.

Design requirements:

1. Physical and Operational Characteristics

 a. Performance requirements

Device must be capable of accurately dispensing set doses at designated

time. The device will only dispense at given time intervals and inhibit

patient access to medication at non-designated times. The design must

incorporate a cutting device which halves a variety of pill shapes and sizes.

The device must also promptly inform medical personnel when doses have

been missed by the patient.

 b. Safety

The mechanical pill cutter must accurately cut pills in half so as to

administer correct doses of medication. Additionally, the cutting device

must be contained within the support casing.

26

 c. Accuracy and Reliability

The dispenser must administer the appropriate dosage of medication at the

programmed time interval.

 d. Life in Service

Multiple years and the dispenser can be reprogrammable for a different

medication regimen.

 e. Shelf Life

The mechanical pill cutter must safely contain pills for the duration of the

prescription.

 f. Operating Environment

This device could be used in a variety of settings including, but not limited

to, homes, hospitals, and nursing homes.

 g. Size

The device should be of minimal size; however the final prototype may be

larger for demonstration purposes. Moreover, the device may be scaleable

to handle both large and small medication regimens and pill bottle sizes.

 h. Material

FDA approved plastic materials, which are easily sterilized to allow for

repeated usage.

 i. Aesthetics, Appearance, and Finish

The device should be aesthetically pleasing.

2. Production Characteristics

 a. Quantity

One large-scale working prototype.

 b. Target Product Cost

The total cost of the project may be no more than $2000 but minimal cost

is desired to allow access for patients of all economic classes.

3. Miscellaneous

 a. Standards and Specification

Must be FDA approved in order to put into service.

 b. Customer

Individuals that have numerous medications, or individuals who have

trouble complying with their recommended medication regimen.

 c. Patient-related concerns

Dispensing the appropriate dosage of medication at the scheduled time and

not allowing patient to access medication at non-scheduled times.

 d. Competition

Other devices are on the market that addresses medication regimen

compliance by reminding the individual to take their pills.

Interview with pharmacist

Ken O’neill of the UW-Pharmacy department, several questions were asked about

the relative size and frequency of pills that are commonly cut (12). The answers to the

questions are provided below.

27

What is the most common smallest pill to cut?

The smallest pill to effectively cut would be either Atenolol 25mg or 25 mg

hydrothroclorizide. The size of these pills is similar to over-the-counter Claritin

What is the largest pill that would typically be dispensed?

 Potassium Chloride pill. Similar in size to Centrum.

What are your thoughts on the pill cutters that are currently used?

Currently, pill cutters often crush pills instead of splitting which is a limitation.

However, using a guillotine approach, less product is lost because the blade does

not saw through but merely splits pills into two halves.

How common is it for individuals to be prescribed a larger pill to cut instead of single

smaller pills?

This can depend on the marketing of the pill, if an effective higher dose has been

approved and the patient has run out, it may not be cost effective to produce a

smaller pill. However a physician may wish to prescribe a lower dosage and thus

the individual has no choice but to cut the pill. People who are more cost

conscious also often split pills.

From the interview, a range of sizes of pills can be roughly estimated. Using these values

loosely, we can design our pill cutter to effectively position and cut the necessary sizes of

pills. It is still necessary, however, to consider all sizes of pills that customers may take

in order to create a pill dispenser capable of selecting any size pill for delivery.

Final BASIC Stamp program

' {$STAMP BS2}

' {$PBASIC 2.5}

' -----[Variables]---

idx VAR Byte ' loop counter

PSENSE VAR Byte

PSENSE2 VAR Byte

MIXER VAR Byte

sensor VAR Byte

PILLS VAR Byte

ALARM VAR Byte

ALARM2 VAR Byte

BUTN VAR Byte

' -----[Program Code]--

Main:

PILLS = 20

DO WHILE PILLS > 0

BUTN = 0

28

DO WHILE BUTN = 0 '---------Start button loop until 1 button is

pushed-----

IF (IN4 = 1) THEN

 BUTN = 4

 HIGH 8

 GOSUB Half_Pill_Program 'half pill program runs once

ELSEIF (IN5 = 1) THEN

 BUTN = 5

 HIGH 9

 GOSUB Whole_Pill_Program 'whole pill program runs once

ELSEIF (IN6 = 1) THEN

 BUTN = 6

 HIGH 10

 GOSUB Whole_Pill_Program

 HIGH 10

 GOSUB Half_Pill_Program 'whole pill program runs once,

followed by half pill program

ELSEIF (IN7 = 1) THEN

 BUTN = 7

 HIGH 11

 GOSUB Whole_Pill_Program

 HIGH 11

 GOSUB Whole_Pill_Program

ELSE

ENDIF

LOOP

LOOP

END

'--------Whole Pill Program Sub-routine

Whole_Pill_Program:

FOR idx = 1 TO 100

 PULSOUT 13, 250

 PAUSE 20

NEXT

PSENSE = 1

ALARM = 0

DO WHILE PSENSE = 1

29

FOR MIXER = 1 TO 150

 PULSOUT 12, 1000

 PAUSE 20

NEXT

FOR MIXER = 1 TO 150

 PULSOUT 12, 500

 PAUSE 20

NEXT

PAUSE 2000

FOR idx = 1 TO 50

 PULSOUT 13, 500

 PAUSE 20

NEXT

PAUSE 1000

 IF (IN3 = 1) THEN

 ALARM = ALARM + 1

 IF (ALARM = 4) THEN

 PAUSE 500

 LOW 9

 PAUSE 500

 HIGH 9

 PAUSE 500

 LOW 9

 PAUSE 500

 HIGH 9

 FREQOUT 0, 2000, 4000

 LOW 9

 PAUSE 500

 HIGH 9

 PAUSE 500

 LOW 9

 LOW 11

 PAUSE 2000

 FOR idx = 1 TO 50

 PULSOUT 13, 250 'Back to start, Type 1 Error

 PAUSE 20

 NEXT

 DEBUG "NO PILL WAS CAUGHT", CR

END 'Program Ends

 ELSE

 PAUSE 1000

 FOR idx = 1 TO 50

 PULSOUT 13, 250 'Back to top for more mixing (Less

than three attempts)

 PAUSE 20

 NEXT

 ENDIF

 ELSE

 PSENSE = PSENSE - 1

 ENDIF

LOOP

PAUSE 1000

FOR idx = 1 TO 100

 PULSOUT 13, 1250

 PAUSE 20 'Pill drum rotates down to 180 degrees to

dispense whole pill

30

NEXT

PSENSE2 = 1

ALARM2 = 0

DO WHILE PSENSE2 = 1

IF (IN3 = 0) THEN

 PAUSE 1000

 ALARM2 = ALARM2 + 1

 IF (ALARM2 = 3) THEN 'Type 2 Error: Pill is Stuck

 FOR idx = 1 TO 2

 PAUSE 500

 LOW 9

 PAUSE 500

 HIGH 9

 PAUSE 500

 LOW 9

 PAUSE 500

 HIGH 9

 FREQOUT 0, 2000, 4000

 LOW 9

 PAUSE 500

 HIGH 9

 PAUSE 500

 NEXT

 LOW 9

 LOW 11

 PAUSE 2000

 FOR idx = 1 TO 50

 PULSOUT 13, 250

 PAUSE 20

 NEXT

 DEBUG "CHECK PILL DRUM, YOUR PILL MUST BE STUCK.", CR

END 'Program Ends

 ELSE

 PAUSE 2000

 FOR idx = 1 TO 30

 PULSOUT 13, 1200 'Rotate back UP to try again

 PAUSE 20

 NEXT

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 1250 'Rotate down to try and

dispense

 PAUSE 20

 NEXT

 ENDIF

ELSE

 PSENSE2 = PSENSE2 - 1

 PAUSE 500

ENDIF

LOOP

DEBUG "Pill has been dispensed", CR

PAUSE 1000

FOR idx = 1 TO 150

 PULSOUT 13, 250

 PAUSE 20

NEXT

PAUSE 2000

31

LOW 9

LOW 11

PAUSE 1000

HIGH 9

HIGH 11

PAUSE 1000

LOW 9

LOW 11

PAUSE 1000

HIGH 9

HIGH 11

PAUSE 1000

FREQOUT 0, 2000, 4000 'ENDING TONE ROTATE BACK TO TOP

PAUSE 1000

LOW 9

LOW 11

PILLS = PILLS - 1

RETURN

''''''''''''''''''''STARTING HALF PILL

PROCEDURE''

Half_Pill_Program:

FOR idx = 1 TO 100

 PULSOUT 13, 250

 PAUSE 20

NEXT

PAUSE 1000

IF (IN1 = 1)THEN '--------Checks sensor in Half pill holder---------

PSENSE = 1

ALARM = 0

DO WHILE PSENSE = 1

FOR MIXER = 1 TO 150

 PULSOUT 12, 1000

 PAUSE 20

NEXT

FOR MIXER = 1 TO 150

 PULSOUT 12, 500

 PAUSE 20

NEXT

PAUSE 2000

FOR idx = 1 TO 50

 PULSOUT 13, 500

 PAUSE 20

NEXT

PAUSE 1000

 IF (IN3 = 1) THEN

 ALARM = ALARM + 1

32

 IF (ALARM = 4) THEN

 FOR idx = 1 TO 2

 PAUSE 1000

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 LOW 8

 PAUSE 500

 HIGH 8

 FREQOUT 0, 2000, 4000

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 NEXT

 LOW 8

 LOW 10

 PAUSE 2000

 FOR idx = 1 TO 50

 PULSOUT 13, 250 'Back to start, Type 1 Error

 PAUSE 20

 NEXT

 DEBUG "NO PILL WAS CAUGHT", CR

END 'Program Ends

 ELSE

 PAUSE 1000

 FOR idx = 1 TO 50

 PULSOUT 13, 250 'Back to top for more mixing (Less

than three attempts)

 PAUSE 20

 NEXT

 ENDIF

 ELSE

 PSENSE = PSENSE - 1

ENDIF

LOOP

PAUSE 1000

FOR idx = 1 TO 50

 PULSOUT 13, 650 'Rotating down to 90 degrees for cutting

 PAUSE 20

NEXT

PAUSE 3000

HIGH 2 'Activate Solenoid for cutting

PAUSE 2500

LOW 2 'Deactivate solenoid for cutting

PAUSE 2000

FOR idx = 1 TO 30

 PULSOUT 13, 900 'Rotating down to deliver first half pill

 PAUSE 20

NEXT

PAUSE 2000

33

PSENSE2 = 1

ALARM2 = 0

DO WHILE PSENSE2 = 1

PAUSE 1000

IF (IN1 = 1) THEN

 PAUSE 1000

 ALARM2 = ALARM2 + 1

 IF (ALARM2 = 3) THEN 'Type 2 Error: Pill is Stuck

 FOR idx = 1 TO 2

 PAUSE 1000

 LOW 8

 PAUSE 1000

 HIGH 8

 PAUSE 1000

 LOW 8

 PAUSE 1000

 HIGH 8

 FREQOUT 0, 2000, 4000

 LOW 8

 PAUSE 1000

 HIGH 8

 PAUSE 1000

 LOW 8

 PAUSE 1000

 HIGH 8

 PAUSE 1000

 NEXT

 LOW 8

 LOW 10

 PAUSE 2000

 FOR idx = 1 TO 150

 PULSOUT 13, 250 'Rotate back up to starting

position

 PAUSE 20

 NEXT

END 'Program Ends

 ELSE

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 860 'Rotate back up to try again

 PAUSE 20

 NEXT

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 900 'Rotate down to try and

dispense first half pill

 PAUSE 20

 NEXT

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 860 'Rotate back up to try again

 PAUSE 20

 NEXT

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 900 'Rotate down to try and

dispense first half pill

 PAUSE 20

 NEXT

 PAUSE 2000

 ENDIF

ELSE

34

 PSENSE2 = PSENSE2 - 1

 PAUSE 500

ENDIF

LOOP

PAUSE 1000

FOR idx = 1 TO 100

 PULSOUT 13, 1250

 PAUSE 20 'Pill drum rotates down to 180 degrees to

dispense other half pill

NEXT

PSENSE2 = 1

ALARM2 = 0

DO WHILE PSENSE2 = 1

IF (IN3 = 0) THEN

 PAUSE 1000

 ALARM2 = ALARM2 + 1

 IF (ALARM2 = 3) THEN 'Type 2 Error: Pill is Stuck

 FOR idx = 1 TO 2

 PAUSE 1000

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 LOW 8

 PAUSE 500

 HIGH 8

 FREQOUT 0, 2000, 4000

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 LOW 8

 PAUSE 500

 HIGH 8

 PAUSE 500

 NEXT

 LOW 8

 LOW 10

 PAUSE 2000

 FOR idx = 1 TO 150

 PULSOUT 13, 250

 PAUSE 20

 NEXT

END

 'Program Ends

ELSE

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 1200 'Rotate back UP to try again

 PAUSE 20

 NEXT

 PAUSE 1000

 FOR idx = 1 TO 30

 PULSOUT 13, 1250 'Rotate down to try and

dispense

 PAUSE 20

 NEXT

 ENDIF

ELSE

 PSENSE2 = PSENSE2 - 1

 PAUSE 500

35

ENDIF

LOOP

DEBUG "Half Pill has been dispensed", CR

PAUSE 1000

FOR idx = 1 TO 150

 PULSOUT 13, 250

 PAUSE 20

NEXT

PAUSE 2000

LOW 8

LOW 10

PAUSE 1000

HIGH 8

HIGH 10

PAUSE 1000

LOW 8

LOW 10

PAUSE 1000

HIGH 8

HIGH 10

PAUSE 1000

FREQOUT 0, 2000, 4000 'ENDING TONE ROTATE BACK TO TOP

PAUSE 1000

LOW 8

LOW 10

PILLS = PILLS - 1

ELSE '---------------------Half pill sensor senses pill and

half pill will be delivered---------

FOR idx = 1 TO 100

 PULSOUT 14, 750

 PAUSE 20

NEXT

PAUSE 2000

FOR idx = 1 TO 100

 PULSOUT 14, 250

 PAUSE 20

NEXT

DEBUG "Half Pill has been dispensed", CR

PAUSE 2000

FOR idx = 1 TO 150

 PULSOUT 13, 250

 PAUSE 20

NEXT

PAUSE 2000

LOW 8

36

LOW 10

PAUSE 1000

HIGH 8

HIGH 10

PAUSE 1000

LOW 8

LOW 10

PAUSE 1000

HIGH 8

HIGH 10

PAUSE 1000

FREQOUT 0, 2000, 4000 'ENDING TONE ROTATE BACK TO TOP

PAUSE 1000

LOW 8

LOW 10

ENDIF

RETURN '------------RETURN TO MAIN PROGRAM LOOP???????????????----------

'PIN 0 = Alarm

'PIN 1 = Half Pill Sensor

'PIN 2 = Solenoid

'PIN 3 = Pill Drum Sensor

'PIN 4 = 1/2 Pill Button

'PIN 5 = 1 Pill Button

'PIN 6 = 1 and 1/2 Pills Button

'PIN 7 = 2 Pills Button

'PIN 8 = 1/2 Pill Light

'PIN 9 = 1 Pill Light

'PIN 10 = 1 and 1/2 Pills Light

'PIN 11 = 2 Pills Light

'PIN 12 = Mixing Servo Motor

'PIN 13 = Pill Drum Servo Motor

'PIN 14 = Half Pill Holder/Trap Door Servo Motor

Final interface program

Pill.Java

package scheduler;

import java.util.Date;

/**

 *

 * @author huth

 */

public class Pill {

 public int id;

 public String Description = "";

 public double quantity = 7.0;

 public String DailyOrWeekly = "Daily";

37

 public int DayOfWeek = 1;

 public int TimesPerDay = 0;

 public String TimeOfDay1 = "";

 public String TimeOfDay2 = "";

 public String TimeOfDay3 = "";

 public String TimeOfDay4 = "";

 public double NumberOfPills1 = 0.0;

 public double NumberOfPills2 = 0.0;

 public double NumberOfPills3 = 0.0;

 public double NumberOfPills4 = 0.0;

 public double Total_Pills_Inserted = 0.0;

// public Date dispenseDtm;

 public Pill () {}

 public void setID (int ai_ID) { id = ai_ID; }

 public int getID(){ return id; }

 public void setTotalPillsInserted (double a_total_pills_inserted) { Total_Pills_Inserted = a_total_pills_inserted;}

 public double getTotalPillsInserted() { return Total_Pills_Inserted; }

 public void setDesc (String as_description) { Description = as_description; }

 public String getDesc () { return Description; }

 public int GetTimesPerDay () { return TimesPerDay; }

 public void SetTimesPerDay(int al_TimesPerDay) { TimesPerDay = al_TimesPerDay; }

 public void setQuantity (double as_quantity) { quantity = as_quantity; }

 public double getQuantity () { return quantity; }

 public void SetTimeOfDay1 (String adt_timeofday) { TimeOfDay1 = adt_timeofday; }

public String GetTimeOfDay1 () { return TimeOfDay1; }

 public void SetTimeOfDay2 (String adt_timeofday) { TimeOfDay2 = adt_timeofday; }

 public String GetTimeOfDay2 () { return TimeOfDay2; }

 public void SetTimeOfDay3 (String adt_timeofday) { TimeOfDay3 = adt_timeofday; }

 public String GetTimeOfDay3 () { return TimeOfDay3; }

 public void SetTimeOfDay4 (String adt_timeofday) { TimeOfDay4 = adt_timeofday; }

 public String GetTimeOfDay4 () { return TimeOfDay4; }

 public void SetNumberOfPills1 (double ad_numberOfPills) { NumberOfPills1 = ad_numberOfPills; }

 public double GetNumberOfPills1 () { return NumberOfPills1; }

 public void SetNumberOfPills2 (double ad_numberOfPills) { NumberOfPills2 = ad_numberOfPills; }

 public double GetNumberOfPills2 () { return NumberOfPills2; }

 public void SetNumberOfPills3 (double ad_numberOfPills) { NumberOfPills3 = ad_numberOfPills; }

 public double GetNumberOfPills3 () { return NumberOfPills3; }

38

 public void SetNumberOfPills4 (double ad_numberOfPills) { NumberOfPills4 = ad_numberOfPills; }

 public double GetNumberOfPills4 () { return NumberOfPills4; }

 public void SetDayOfWeek (int a_dayOfWk) { DayOfWeek = a_dayOfWk; }

 public double GetDayOfWeek () { return DayOfWeek; }

 public void SetDailyOrWeekly (String a_dailyOrWeekly) { DailyOrWeekly = a_dailyOrWeekly; }

 public String GetDailyOrWeekly () { return DailyOrWeekly; }

 // public void setDispenseDtm (Date as_dispenseDtm) { dispenseDtm = dispenseDtm; }

 //public Date getDispenseDtm () { return dispenseDtm; }

 public String toString() { return ""; }

}

Window.Java

package scheduler;

/**

 *

 * @author huth

 */

public class Window extends javax.swing.JFrame {

 protected Pill pill = null;

 protected int timesPerDayCnt;

 protected int windowNum;

 public void setPill(Pill a_pill) { pill = a_pill; }

 public Pill getPill() { return pill; }

 public void setTimesPerDayCnt(int a_timesPerDayCnt) { timesPerDayCnt = a_timesPerDayCnt; }

 public int gettimesPerDayCnt() { return timesPerDayCnt; }

 public void setWindowNum (int a_WindowNum) { windowNum = a_WindowNum; }

 public int getWindowNum() { return windowNum; }

 }

WindowManager.Java

package scheduler;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JFrame;

/**

 *

 * @author huth

 */

public class WindowManager {

 public static void switchWindow (Window currentWindow, int al_destinationWindow)

39

 {

 int destinationWindow = al_destinationWindow;

 int timesPerDayCnt = currentWindow.gettimesPerDayCnt();

 Pill pill = currentWindow.getPill();

 Window window = WindowManager.getWindow(destinationWindow, pill);

 if (destinationWindow == 7)

 {

 timesPerDayCnt++;

 if(timesPerDayCnt < pill.GetTimesPerDay())

 {

 window = WindowManager.getWindow(5, pill);

 }

 }

 else if (destinationWindow == 4)

 {

 if (timesPerDayCnt > 0 && currentWindow.windowNum!=3)

 {

 timesPerDayCnt--;

 window = WindowManager.getWindow(6, pill);

 }

 }

 window.setTimesPerDayCnt(timesPerDayCnt);

 window.setVisible(true);

 currentWindow.setVisible(false);

 }

 public static void switchWindow (int al_destinationWindow)

 {

 int destinationWindow = al_destinationWindow;

 Window window = WindowManager.getWindow(destinationWindow, new Pill());

 window.setVisible(true);

 }

 private static Window getWindow (int al_destinationWindow, Pill a_pill)

 {

Window window = null;

 try {

 int destinationWindow = al_destinationWindow;

 switch (destinationWindow) {

 case 1:

 window = new PillMaintenanceWindow();

 break;

 case 2:

 window = new PillsInserted(a_pill);

 break;

 case 3:

 window = new DailyWeekly(a_pill);

 break;

 case 4:

 window = new TimePerDay(a_pill);

 break;

 case 5:

 window = new TimesOfDay(a_pill);

 break;

 case 6:

 window = new NumberOfPills(a_pill);

40

 break;

 case 7:

 window = new PillAddConfirm(a_pill);

 break;

 case 8:

 window = new DayOfWeek(a_pill);

 break;

 case 9:

 window = new Description(a_pill);

 break;

 }

 window.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 window.setLocationRelativeTo(null);

 window.pack();

 }

 catch (ClassNotFoundException ex) {

 Logger.getLogger(WindowManager.class.getName()).log(Level.SEVERE, null, ex);

 }

 return window;

 }

}

PillMaintenence.Window

package scheduler;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Date;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JTable;

import javax.swing.table.DefaultTableModel;

/**

 *

 * @author huth

 */

public class PillMaintenanceWindow extends Window {

 private JTable jTable2;

 private ArrayList<Pill> pills;

 private XmlDAO xmlDAO;

 private BspDAO bspDAO;

 public int destinationWindow = 1;

 /** Creates new form PillMaintenanceWindow */

 public PillMaintenanceWindow() throws ClassNotFoundException {

 //try {

 this.setWindowNum(1);

 bspDAO = new BspDAO("Pill.bsp");

 xmlDAO = new XmlDAO("Pill.xml");

 pills = xmlDAO.read();

 jTable2 = xmlDAO.fill(pills);

 initComponents();

 //Pill newPill = new Pill();

 //newPill.setID(3);

 //newPill.setDesc("Pill3");

 //newPill.setQuantity(1.5);

 //newPill.setDispenseDtm(new Date());

 //pills.add(newPill);

 //xmlDAO.write(pills);

 // jTable1.set

 // } catch (FileNotFoundException ex) {

41

 // Logger.getLogger(PillMaintenanceWindow.class.getName()).log(Level.SEVERE, null, ex);

 // }

 // jTable1 = xmlDAO.fill(pills);

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jScrollPane1 = new javax.swing.JScrollPane();

 jTable1 = new javax.swing.JTable();

 jButton1 = new javax.swing.JButton();

 jButton3 = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jTable1.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jTable1.setModel(jTable2.getModel());

 jTable1.setAutoResizeMode(javax.swing.JTable.AUTO_RESIZE_ALL_COLUMNS);

 jTable1.setFocusable(false);

 jTable1.setRowHeight(24);

 jTable1.setSelectionBackground(new java.awt.Color(241, 241, 255));

 jScrollPane1.setViewportView(jTable1);

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Add");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton3.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton3.setText("Delete");

 jButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton3ActionPerformed(evt);

 }

 });

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 810, Short.MAX_VALUE)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 83,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(23, 23, 23)

 .add(jButton3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 107,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap())

);

 layout.setVerticalGroup(

42

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .addContainerGap()

 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 459, Short.MAX_VALUE)

 .add(18, 18, 18)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 40,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 41,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-850)/2, (screenSize.height-577)/2, 850, 577);

 }// </editor-fold>

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 //1. Create the frame.

 //TimesPerDay.main(args)

 //PillType.main(null);

 //this.setVisible(false);

 pill = new Pill();

 WindowManager.switchWindow(this, 9);

 // destinationWindow = 2;

 //frame = new TimesPerDay("FrameDemo");

//2. Optional: What happens when the frame closes?

//frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//3. Create components and put them in the frame.

//...create emptyLabel...

//frame.getContentPane().add(emptyLabel, BorderLayout.CENTER);

//4. Size the frame.

//frame.pack();

//5. Show it.

//frame.setVisible(true);

 }

 private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {

 try {

 int selectedRow = jTable1.getSelectedRow();

 if (jTable1.getRowCount() > 0)

 {

 ((DefaultTableModel)jTable1.getModel()).removeRow(selectedRow);

 pills.remove(selectedRow - 1);

 xmlDAO.write(pills);

 bspDAO.write(pills);

 }

 } catch (FileNotFoundException ex) {

 Logger.getLogger(PillMaintenanceWindow.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 /**

 * @param args the command line arguments

 */

43

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 new PillMaintenanceWindow().setVisible(true);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(PillMaintenanceWindow.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 });

 //XmlDAO xmlDAO = new XmlDAO("Pill.xml");

 //ArrayList<Pill> pills = xmlDAO.read();

 //jTable1 = xmlDAO.fill(pills);

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton3;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTable jTable1;

 // End of variables declaration

}

Description.Java

package scheduler;

/**

 *

 * @author huth

 */

public class Description extends Window {

 /** Creates new form Description */

 public Description() {

 initComponents();

 }

 public Description(Pill a_pill) {

 this.setWindowNum(9);

 pill = a_pill;

 initComponents();

 errorMessage.setVisible(false);

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jTextField1 = new javax.swing.JTextField();

 jLabel1 = new javax.swing.JLabel();

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 errorMessage = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

44

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 jTextField1.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jTextField1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jTextField1ActionPerformed(evt);

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("Enter Pill Discription:");

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Next");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Back");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 errorMessage.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 errorMessage.setForeground(new java.awt.Color(255, 0, 0));

 errorMessage.setText("Please enter a description");

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 89,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 613, Short.MAX_VALUE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 103,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(layout.createSequentialGroup()

 .add(29, 29, 29)

 .add(jLabel1))

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(errorMessage))

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jTextField1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 587,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap())

45

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jLabel1)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jTextField1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(errorMessage)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 358, Short.MAX_VALUE)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 43,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 39,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-839)/2, (screenSize.height-580)/2, 839, 580);

 }// </editor-fold>

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 pill.setDesc("");

 WindowManager.switchWindow(this, 1);

 }

 private void jTextField1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 if (jTextField1.getText().trim().length() == 0)

 {

 errorMessage.setVisible(true);

 }

 else

 {

 errorMessage.setVisible(false);

 pill.setDesc(jTextField1.getText());

 WindowManager.switchWindow(this, 2);

 }

 }

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 jTextField1.setText(pill.getDesc());

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new Description().setVisible(true);

 }

 });

46

 }

 // Variables declaration - do not modify

 private javax.swing.JLabel errorMessage;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JTextField jTextField1;

 // End of variables declaration

}

PillsInserted.Java

package scheduler;

/**

 *

 * @author huth

 */

public class PillsInserted extends Window {

 /** Creates new form PillsInserted */

 public PillsInserted() {

 initComponents();

 }

 public PillsInserted(Pill a_pill) {

 this.setWindowNum(2);

 pill = a_pill;

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 buttonGroup1 = new javax.swing.ButtonGroup();

 jLabel1 = new javax.swing.JLabel();

 jRadioButton1 = new javax.swing.JRadioButton();

 jRadioButton2 = new javax.swing.JRadioButton();

 jRadioButton3 = new javax.swing.JRadioButton();

 jRadioButton4 = new javax.swing.JRadioButton();

 jRadioButton5 = new javax.swing.JRadioButton();

 jButton2 = new javax.swing.JButton();

 jButton1 = new javax.swing.JButton();

 jLabel2 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("How many weeks/months worth of pills were inserted?");

47

 buttonGroup1.add(jRadioButton1);

 jRadioButton1.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jRadioButton1.setText("1 Week");

 jRadioButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jRadioButton1ActionPerformed(evt);

 }

 });

 buttonGroup1.add(jRadioButton2);

 jRadioButton2.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jRadioButton2.setText("2 Weeks");

 jRadioButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jRadioButton2ActionPerformed(evt);

 }

 });

 buttonGroup1.add(jRadioButton3);

 jRadioButton3.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jRadioButton3.setText("3 Weeks");

 jRadioButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jRadioButton3ActionPerformed(evt);

 }

 });

 buttonGroup1.add(jRadioButton4);

 jRadioButton4.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jRadioButton4.setText("1 Month");

 jRadioButton4.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jRadioButton4ActionPerformed(evt);

 }

 });

 buttonGroup1.add(jRadioButton5);

 jRadioButton5.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jRadioButton5.setText("2 Months");

 jRadioButton5.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jRadioButton5ActionPerformed(evt);

 }

 });

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Back");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Next");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

48

 jLabel2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(jRadioButton3, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 814, Short.MAX_VALUE)

 .addContainerGap())

 .add(layout.createSequentialGroup()

 .add(jRadioButton1)

 .addContainerGap(720, Short.MAX_VALUE))

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .add(jLabel2)

 .add(297, 297, 297))

 .add(layout.createSequentialGroup()

 .add(jRadioButton2)

 .addContainerGap(708, Short.MAX_VALUE))

 .add(layout.createSequentialGroup()

 .add(jRadioButton4, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 769, Short.MAX_VALUE)

 .add(61, 61, 61))

 .add(layout.createSequentialGroup()

 .add(jRadioButton5, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 769, Short.MAX_VALUE)

 .add(61, 61, 61))))

 .add(layout.createSequentialGroup()

 .add(10, 10, 10)

 .add(jLabel1)

 .addContainerGap(42, Short.MAX_VALUE))

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 88,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 636, Short.MAX_VALUE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 89,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jLabel1)

 .add(24, 24, 24)

 .add(jRadioButton1)

 .add(26, 26, 26)

 .add(jRadioButton2)

 .add(29, 29, 29)

 .add(jRadioButton3)

 .add(28, 28, 28)

 .add(jRadioButton4)

 .add(30, 30, 30)

 .add(jRadioButton5)

 .add(93, 93, 93)

 .add(jLabel2)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 44, Short.MAX_VALUE)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton2)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 39,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

49

 .addContainerGap())

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-847)/2, (screenSize.height-576)/2, 847, 576);

 }// </editor-fold>

 private void jRadioButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jRadioButton3ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jRadioButton4ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jRadioButton5ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 pill.setQuantity(7.0);

 WindowManager.switchWindow(this, 9);

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 if (jRadioButton1.isSelected())

 {

 pill.setQuantity(7.0);

 }

 else if (jRadioButton2.isSelected())

 {

 pill.setQuantity(14.0);

 }

 else if (jRadioButton3.isSelected())

 {

 pill.setQuantity(21.0);

 }

 else if (jRadioButton4.isSelected())

 {

 pill.setQuantity(30.0);

 }

 else if (jRadioButton5.isSelected())

 {

 pill.setQuantity(60.0);

 }

 WindowManager.switchWindow(this, 3);

 }

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 if (pill.getQuantity() == 7.0)

 {

 jRadioButton1.setSelected(true);

 }

 else if (pill.getQuantity() == 14.0)

 {

 jRadioButton2.setSelected(true);

50

 }

 else if (pill.getQuantity() == 21.0)

 {

 jRadioButton3.setSelected(true);

 }

 else if (pill.getQuantity() == 30.0)

 {

 jRadioButton4.setSelected(true);

 }

 else if (pill.getQuantity() == 60.0)

 {

 jRadioButton5.setSelected(true);

 }

 }

 private void jRadioButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new PillsInserted().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.ButtonGroup buttonGroup1;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JRadioButton jRadioButton1;

 private javax.swing.JRadioButton jRadioButton2;

 private javax.swing.JRadioButton jRadioButton3;

 private javax.swing.JRadioButton jRadioButton4;

 private javax.swing.JRadioButton jRadioButton5;

 // End of variables declaration

}

DailyWeekly.Java

package scheduler;

/**

 *

 * @author huth

 */

public class DailyWeekly extends Window {

 /** Creates new form DailyWeekly */

 public DailyWeekly() {

 initComponents();

 }

 public DailyWeekly(Pill a_pill) {

 this.setWindowNum(3);

 pill = a_pill;

51

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 buttonGroup1 = new javax.swing.ButtonGroup();

 buttonGroup2 = new javax.swing.ButtonGroup();

 buttonGroup3 = new javax.swing.ButtonGroup();

 jLabel1 = new javax.swing.JLabel();

 rbWeekly = new javax.swing.JRadioButton();

 jButton3 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 rbDaily = new javax.swing.JRadioButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("How often does the paitient take the pill?");

 buttonGroup1.add(rbWeekly);

 rbWeekly.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbWeekly.setText("Weekly");

 rbWeekly.setAutoscrolls(true);

 rbWeekly.setInheritsPopupMenu(true);

 rbWeekly.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbWeeklyActionPerformed(evt);

 }

 });

 jButton3.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton3.setText("Back");

 jButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton3ActionPerformed(evt);

 }

 });

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Next");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbDaily);

 rbDaily.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbDaily.setText("Daily");

52

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(32, 32, 32)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(rbDaily)

 .add(jLabel1)

 .add(layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(rbWeekly)

 .add(jButton3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 94,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 620, Short.MAX_VALUE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 89,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jLabel1)

 .add(18, 18, 18)

 .add(rbDaily)

 .add(13, 13, 13)

 .add(rbWeekly)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 340, Short.MAX_VALUE)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 40,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 41,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-844)/2, (screenSize.height-573)/2, 844, 573);

 }// </editor-fold>

 private void rbWeeklyActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 if (rbDaily.isSelected()){

 pill.SetDailyOrWeekly("Daily");

 WindowManager.switchWindow(this, 4);

 }

 else{

 pill.SetDailyOrWeekly("Weekly");

 WindowManager.switchWindow(this, 8);

 }

 }

 private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {

 pill.SetDailyOrWeekly("Daily");

 WindowManager.switchWindow(this, 2);

 }

53

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 // TODO add your handling code here:

 if (pill.GetDailyOrWeekly().equals("Daily"))

 {

 rbDaily.setSelected(true);

 }

 else if (pill.GetDailyOrWeekly().equals("Weekly"))

 {

 rbWeekly.setSelected(true);

 }

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new DailyWeekly().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.ButtonGroup buttonGroup1;

 private javax.swing.ButtonGroup buttonGroup2;

 private javax.swing.ButtonGroup buttonGroup3;

 private javax.swing.JButton jButton2;

 private javax.swing.JButton jButton3;

 private javax.swing.JLabel jLabel1;

 protected javax.swing.JRadioButton rbDaily;

 protected javax.swing.JRadioButton rbWeekly;

 // End of variables declaration

}

TimesPerDay.Java

package scheduler;

/**

 *

 * @author huth

 */

public class TimePerDay extends Window {

 /** Creates new form TimePerDay */

 public TimePerDay() {

 initComponents();

 }

 public TimePerDay(Pill a_pill) {

 this.setWindowNum(4);

 pill = a_pill;

 initComponents();

 switch (pill.GetTimesPerDay())

 {

 case 0:

 rbTime1.setSelected(true);

 break;

 case 1:

 rbTime1.setSelected(true);

 break;

54

 case 2:

 rbTime2.setSelected(true);

 break;

 case 3:

 rbTime3.setSelected(true);

 break;

 case 4:

 rbTime4.setSelected(true);

 break;

 }

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 buttonGroup1 = new javax.swing.ButtonGroup();

 buttonGroup2 = new javax.swing.ButtonGroup();

 jLabel1 = new javax.swing.JLabel();

 rbTime1 = new javax.swing.JRadioButton();

 rbTime2 = new javax.swing.JRadioButton();

 rbTime3 = new javax.swing.JRadioButton();

 rbTime4 = new javax.swing.JRadioButton();

 jButton5 = new javax.swing.JButton();

 jButton1 = new javax.swing.JButton();

 jLabel2 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("How many times does the patient take the pill per day?");

 buttonGroup1.add(rbTime1);

 rbTime1.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbTime1.setText("1");

 buttonGroup1.add(rbTime2);

 rbTime2.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbTime2.setText("2");

 buttonGroup1.add(rbTime3);

 rbTime3.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbTime3.setText("3");

 rbTime3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbTime3ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbTime4);

 rbTime4.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbTime4.setText("4");

 rbTime4.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbTime4ActionPerformed(evt);

 }

 });

55

 jButton5.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton5.setText("Back");

 jButton5.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton5ActionPerformed(evt);

 }

 });

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Next");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jLabel2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(40, 40, 40)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(817, 817, 817)

 .add(jLabel2))

 .add(rbTime4)

 .add(rbTime3)

 .add(rbTime1)

 .add(rbTime2)))

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jLabel1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 809,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap(org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .addContainerGap()

 .add(jButton5, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 87,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 611, Short.MAX_VALUE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 93,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(49, 49, 49))

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(20, 20, 20)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(jLabel2)

 .add(jLabel1))

 .add(18, 18, 18)

 .add(rbTime1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 22,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(29, 29, 29)

 .add(rbTime2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 26,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

56

 .add(26, 26, 26)

 .add(rbTime3)

 .add(29, 29, 29)

 .add(rbTime4)

 .add(233, 233, 233)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 41,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton5, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 41, Short.MAX_VALUE))

 .add(25, 25, 25))

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-828)/2, (screenSize.height-585)/2, 828, 585);

 }// </editor-fold>

 private void rbTime3ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void rbTime4ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jButton5ActionPerformed(java.awt.event.ActionEvent evt) {

 pill.SetTimesPerDay(0);

 WindowManager.switchWindow(this, 3);

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 if (rbTime1.isSelected())

 {

 pill.SetTimesPerDay(1);

 }

 else if (rbTime2.isSelected())

 {

 pill.SetTimesPerDay(2);

 }

 else if (rbTime3.isSelected())

 {

 pill.SetTimesPerDay(3);

 }

 else if (rbTime4.isSelected())

 {

 pill.SetTimesPerDay(4);

 }

 WindowManager.switchWindow(this, 5);

 // if (rbTime1.isCursorSet())

 //{

 // pill.SetTimesPerDay(1);

 //} else if (rbTime2.isCursorSet())

 //{

 // pill.SetTimesPerDay(2);

 //} else if (rbTime3.isCursorSet())

 //{ pill.SetTimesPerDay(3);

 //} else

 //{ pill.SetTimesPerDay(4);

 //WindowManager.switchWindow(this, number);

 // if (rbTime1.isCursorSet())

57

 //{

 // pill.SetTimesPerDay(1);

 //} else if (rbTime2.isCursorSet())

 //{

 // pill.SetTimesPerDay(2);

 //} else if (rbTime3.isCursorSet())

 //{ pill.SetTimesPerDay(3);

 //} else

 //{ pill.SetTimesPerDay(4);

 //WindowManager.switchWindow(this, number);

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new TimePerDay().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.ButtonGroup buttonGroup1;

 private javax.swing.ButtonGroup buttonGroup2;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton5;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JRadioButton rbTime1;

 private javax.swing.JRadioButton rbTime2;

 private javax.swing.JRadioButton rbTime3;

 private javax.swing.JRadioButton rbTime4;

 // End of variables declaration

TimeOfDay.Java

package scheduler;

/**

 *

 * @author huth

 */

public class TimesOfDay extends Window {

 /** Creates new form TimesOfDay */

 public TimesOfDay() {

 initComponents();

 }

 public TimesOfDay(Pill a_pill) {

 this.setWindowNum(5);

 pill = a_pill;

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

58

 private void initComponents() {

 jLabel1 = new javax.swing.JLabel();

 jScrollPane1 = new javax.swing.JScrollPane();

 lbTimeOfDay = new javax.swing.JList();

 jButton2 = new javax.swing.JButton();

 jButton1 = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 addWindowStateListener(new java.awt.event.WindowStateListener() {

 public void windowStateChanged(java.awt.event.WindowEvent evt) {

 formWindowStateChanged(evt);

 }

 });

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("What is the first time of day the pill is administered?");

 lbTimeOfDay.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 lbTimeOfDay.setModel(new javax.swing.AbstractListModel() {

 String[] strings = { "1:00 am", "1:30 am", "2:00 am", "2:30 am", "3:00am", "3:30 am", "4:00 am", "4:30 am",

"5:00 am", "5:30 am", "6:00 am", "6:30 am", "7:00 am", "7:30 am", "8:00 am", "8:30 am", "9:00 am", "9:30 am",

"10:00 am", "10:30 am", "11:00 am", "11:30 am", "12:00 pm", "12:30 pm", "1:00 pm", "1:30 pm", "2:00 pm", "2:30

pm", "3:00 pm", "3:30 pm", "4:00 pm", "4:30 pm", "5:00 pm", "5:30 pm", "6:00 pm", "6:30 pm", "7:00 pm", "7:30

pm", "8:00 pm", "8:30 pm", "9:00 pm", "9:30 pm", "10:00 pm", "10:30 pm", "11:00 pm", "11:30 pm" };

 public int getSize() { return strings.length; }

 public Object getElementAt(int i) { return strings[i]; }

 });

 jScrollPane1.setViewportView(lbTimeOfDay);

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Back");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Next");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(jLabel1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 807, Short.MAX_VALUE)

 .add(layout.createSequentialGroup()

59

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 106,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(232, 232, 232)

 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 236, Short.MAX_VALUE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 99,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .addContainerGap(31, Short.MAX_VALUE)

 .add(jLabel1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 34,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(18, 18, 18)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING)

 .add(layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 40,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 38,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())

 .add(layout.createSequentialGroup()

 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 430,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(44, 44, 44))))

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-847)/2, (screenSize.height-579)/2, 847, 579);

 }// </editor-fold>

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 switch (timesPerDayCnt)

 {

 case 0:

 pill.TimeOfDay1 = "";

 break;

 case 1:

 pill.TimeOfDay2 = "";

 break;

 case 2:

 pill.TimeOfDay3 = "";

 break;

 case 3:

 pill.TimeOfDay4 = "";

 break;

 }

 if (pill.GetDailyOrWeekly().equals("D"))

 {

 WindowManager.switchWindow(this, 4);

 }

 else

 {

 WindowManager.switchWindow(this, 8);

60

 }

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 String timeOfDay = lbTimeOfDay.getSelectedValue().toString();

 switch (timesPerDayCnt)

 {

 case 0:

 pill.SetTimeOfDay1(timeOfDay);

 break;

 case 1:

 pill.SetTimeOfDay2(timeOfDay);

 break;

 case 2:

 pill.SetTimeOfDay3(timeOfDay);

 break;

 case 3:

 pill.SetTimeOfDay4(timeOfDay);

 break;

 }

 //if ((Pill.NbrPills = 1 and !Pill.Time1.equals(null)) or

 // (Pill.NbrPills = 2 and !Pill.Time2.equals(null)

 WindowManager.switchWindow(this, 6);

 }

 private void formWindowStateChanged(java.awt.event.WindowEvent evt) {

 // TODO add your handling code here:

 }

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 // TODO add your handling code here:

 String TimeNum = "first";

 String timeOfDay = "1:00 am";

 switch (timesPerDayCnt)

 {

 case 0:

 timeOfDay = (pill.TimeOfDay1 == "" ? timeOfDay : pill.TimeOfDay1);

 TimeNum = "first";

 break;

 case 1:

 timeOfDay = (pill.TimeOfDay2 == "" ? timeOfDay : pill.TimeOfDay2);

 TimeNum = "second";

 break;

 case 2:

 timeOfDay = (pill.TimeOfDay3 == "" ? timeOfDay : pill.TimeOfDay3);

 TimeNum = "third";

 break;

 case 3:

 timeOfDay = (pill.TimeOfDay4 == "" ? timeOfDay : pill.TimeOfDay4);

 TimeNum = "forth";

 break;

 }

 jLabel1.setText("What is the " + TimeNum + " time of day the pill is administered?");

 lbTimeOfDay.setSelectedValue(timeOfDay, true);

 }

 /**

61

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new TimesOfDay().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JList lbTimeOfDay;

 // End of variables declaration

}

NumberOfPills.Java

package scheduler;

/**

 *

 * @author huth

 */

public class NumberOfPills extends Window {

 /** Creates new form NumberOfPills */

 public NumberOfPills() {

 initComponents();

 }

 public NumberOfPills(Pill a_pill) {

 this.setWindowNum(6);

 pill = a_pill;

 initComponents();

 //switch()

 //switch(pill.TimeOfDay)

 }

 //String pillNbr;

 //if Pill.Time1.equals(null)

 //{

 // pillNbr = "first";

 //} else if Pill.Time2.equals(null)

 //{

 // pillNbr = "second";

 //} else if Pill.Time3.equals(null)

 //{ pillNbr = "third";

 //} else

 //{ pillNbr = "fourth":

 //}

 // jLabel1 = "How many pills need to be administered the " + pillNbr + " time?";

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

62

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 buttonGroup1 = new javax.swing.ButtonGroup();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTable1 = new javax.swing.JTable();

 buttonGroup2 = new javax.swing.ButtonGroup();

 jLabel1 = new javax.swing.JLabel();

 rbPill5 = new javax.swing.JRadioButton();

 rbPill10 = new javax.swing.JRadioButton();

 rbPill15 = new javax.swing.JRadioButton();

 rbPill20 = new javax.swing.JRadioButton();

 rbPill25 = new javax.swing.JRadioButton();

 rbPill30 = new javax.swing.JRadioButton();

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 jLabel2 = new javax.swing.JLabel();

 jTable1.setModel(new javax.swing.table.DefaultTableModel(

 new Object [][] {

 {null, null, null, null},

 {null, null, null, null},

 {null, null, null, null},

 {null, null, null, null}

 },

 new String [] {

 "Title 1", "Title 2", "Title 3", "Title 4"

 }

));

 jScrollPane1.setViewportView(jTable1);

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel1.setText("How many pills need to be administered ");

 buttonGroup1.add(rbPill5);

 rbPill5.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill5.setText("1/2");

 rbPill5.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbPill5ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbPill10);

 rbPill10.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill10.setText("1");

 rbPill10.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbPill10ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbPill15);

63

 rbPill15.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill15.setText("1 1/2");

 rbPill15.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbPill15ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbPill20);

 rbPill20.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill20.setText("2");

 buttonGroup1.add(rbPill25);

 rbPill25.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill25.setText("2 1/2");

 rbPill25.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 rbPill25ActionPerformed(evt);

 }

 });

 buttonGroup1.add(rbPill30);

 rbPill30.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 rbPill30.setText("3");

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Back");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Next");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 jLabel2.setFont(new java.awt.Font("Lucida Grande", 1, 28));

 jLabel2.setText("the first time?");

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 98,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 620, Short.MAX_VALUE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 94,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(layout.createSequentialGroup()

 .add(jLabel1)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel2))

 .add(rbPill15)

64

 .add(rbPill5)

 .add(rbPill10)

 .add(rbPill30)

 .add(rbPill25)

 .add(rbPill20))

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jLabel1)

 .add(jLabel2))

 .add(18, 18, 18)

 .add(rbPill5)

 .add(18, 18, 18)

 .add(rbPill10)

 .add(18, 18, 18)

 .add(rbPill15)

 .add(18, 18, 18)

 .add(rbPill20)

 .add(20, 20, 20)

 .add(rbPill25)

 .add(18, 18, 18)

 .add(rbPill30)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 138, Short.MAX_VALUE)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 41,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 38,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(8, 8, 8))

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-849)/2, (screenSize.height-577)/2, 849, 577);

 }// </editor-fold>

 private void rbPill5ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

}

 private void rbPill10ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

}

 private void rbPill25ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

}

 private void rbPill15ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

}

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 double numberOfPills = 0.0;

 if (rbPill5.isSelected())

 {

 numberOfPills = 0.5;

 }

65

 else if (rbPill10.isSelected())

 {

 numberOfPills = 1.0;

 }

 else if (rbPill15.isSelected())

 {

 numberOfPills = 1.5;

 }

 else if (rbPill20.isSelected())

 {

 numberOfPills = 2.0;

 }

 else if (rbPill25.isSelected())

 {

 numberOfPills = 2.5;

 }

 else if (rbPill30.isSelected())

 {

 numberOfPills = 3.0;

 }

 switch (timesPerDayCnt)

 {

 case 0:

 pill.SetNumberOfPills1(numberOfPills);

 break;

 case 1:

 pill.SetNumberOfPills2(numberOfPills);

 break;

 case 2:

 pill.SetNumberOfPills3(numberOfPills);

 break;

 case 3:

 pill.SetNumberOfPills4(numberOfPills);

 break;

 }

 WindowManager.switchWindow(this, 7);

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 switch (timesPerDayCnt)

 {

 case 0:

 pill.NumberOfPills1 = 0.0;

 case 1:

 pill.NumberOfPills2 = 0.0;

 case 2:

 pill.NumberOfPills3 = 0.0;

 case 3:

 pill.NumberOfPills4 = 0.0;

 }

 WindowManager.switchWindow(this, 5);

 }

66

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 // TODO add your handling code here:

 double numberOfPills = 0.5;

 String TimeNum = "first";

 switch (timesPerDayCnt)

 {

 case 0:

 numberOfPills = (pill.NumberOfPills1 == 0.0 ? numberOfPills : pill.NumberOfPills1);

 TimeNum = "first";

 break;

 case 1:

 numberOfPills = (pill.NumberOfPills2 == 0.0 ? numberOfPills : pill.NumberOfPills2);

 TimeNum = "second";

 break;

 case 2:

 numberOfPills = (pill.NumberOfPills3 == 0.0 ? numberOfPills : pill.NumberOfPills3);

 TimeNum = "thrid";

 break;

 case 3:

 numberOfPills = (pill.NumberOfPills4 == 0.0 ? numberOfPills : pill.NumberOfPills4);

 TimeNum = "forth";

 break;

 }

 if (numberOfPills == 0.5)

 {

 rbPill5.setSelected(true);

 }

 else if (numberOfPills == 1.0)

 {

 rbPill10.setSelected(true);

 }

 else if (numberOfPills == 1.5)

 {

 rbPill15.setSelected(true);

 }

 else if (numberOfPills == 2.0)

 {

 rbPill20.setSelected(true);

 }

 else if (numberOfPills == 2.5)

 {

 rbPill25.setSelected(true);

 }

 else if (numberOfPills == 3.0)

 {

 rbPill30.setSelected(true);

 }

 jLabel2.setText("the " + TimeNum + " time?");

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new NumberOfPills().setVisible(true);

 }

67

 });

 }

 // Variables declaration - do not modify

 private javax.swing.ButtonGroup buttonGroup1;

 private javax.swing.ButtonGroup buttonGroup2;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTable jTable1;

 private javax.swing.JRadioButton rbPill10;

 private javax.swing.JRadioButton rbPill15;

 private javax.swing.JRadioButton rbPill20;

 private javax.swing.JRadioButton rbPill25;

 private javax.swing.JRadioButton rbPill30;

 private javax.swing.JRadioButton rbPill5;

 // End of variables declaration

}

PillAddConfirm.Java

package scheduler;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.logging.Level;

import java.util.logging.Logger;

import java.awt.*;

import java.applet.*;

/**

 *

 * @author huth

 */

public class PillAddConfirm extends Window {

 /** Creates new form PillAddConfirm */

 public PillAddConfirm() {

 initComponents();

 }

 public PillAddConfirm(Pill a_pill) {

 this.setWindowNum(7);

 pill = a_pill;

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 Description = new javax.swing.JLabel();

 Frequency = new javax.swing.JLabel();

 TimesPerDayA = new javax.swing.JLabel();

 Time1 = new javax.swing.JLabel();

 jLabel6 = new javax.swing.JLabel();

 jLabel11 = new javax.swing.JLabel();

68

 jLabel13 = new javax.swing.JLabel();

 NumPill1 = new javax.swing.JLabel();

 NumPill2 = new javax.swing.JLabel();

 NumPill3 = new javax.swing.JLabel();

 NumPill4 = new javax.swing.JLabel();

 Frequency1 = new javax.swing.JLabel();

 jButton2 = new javax.swing.JButton();

 jButton1 = new javax.swing.JButton();

 jLabel1 = new javax.swing.JLabel();

 jLabel2 = new javax.swing.JLabel();

 jLabel3 = new javax.swing.JLabel();

 jLabel4 = new javax.swing.JLabel();

 jLabel5 = new javax.swing.JLabel();

 jLabel7 = new javax.swing.JLabel();

 jLabel8 = new javax.swing.JLabel();

 jLabel9 = new javax.swing.JLabel();

 jLabel10 = new javax.swing.JLabel();

 jLabel12 = new javax.swing.JLabel();

 jLabel14 = new javax.swing.JLabel();

 jLabel15 = new javax.swing.JLabel();

 jLabel16 = new javax.swing.JLabel();

 JLab3 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 addWindowFocusListener(new java.awt.event.WindowFocusListener() {

 public void windowGainedFocus(java.awt.event.WindowEvent evt) {

 formWindowGainedFocus(evt);

 }

 public void windowLostFocus(java.awt.event.WindowEvent evt) {

 }

 });

 Description.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 Description.setText("Description:");

 Frequency.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 Frequency.setText("Frequency:");

 TimesPerDayA.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 TimesPerDayA.setText("Times Per Day:");

 Time1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 Time1.setText("1) Time:");

 jLabel6.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jLabel6.setText("2) Time:");

 jLabel11.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jLabel11.setText("3) Time:");

 jLabel13.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jLabel13.setText("4) Time:");

 NumPill1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 NumPill1.setText("Number of Pills:");

 NumPill1.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);

 NumPill2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 NumPill2.setText("Number of Pills:");

 NumPill2.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);

 NumPill3.setFont(new java.awt.Font("Lucida Grande", 1, 24));

69

 NumPill3.setText("Number of Pills:");

 NumPill3.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);

 NumPill4.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 NumPill4.setText("Number of Pills:");

 NumPill4.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);

 Frequency1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 Frequency1.setText("Total Pills Inserted: ");

 jButton2.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton2.setText("Back");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 jButton1.setFont(new java.awt.Font("Lucida Grande", 1, 24));

 jButton1.setText("Done");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jLabel1.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel2.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel4.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel5.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel7.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel9.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel10.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel12.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel14.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel15.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 jLabel16.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 JLab3.setFont(new java.awt.Font("Lucida Grande", 0, 24));

 org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(Description)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.UNRELATED)

70

 .add(jLabel1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 112,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(layout.createSequentialGroup()

 .add(Frequency)

 .add(15, 15, 15)

 .add(jLabel2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 130,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.UNRELATED)

 .add(jLabel3))

 .add(layout.createSequentialGroup()

 .add(TimesPerDayA)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(JLab3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 112,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .add(408, 408, 408)

 .add(jLabel8))

 .add(layout.createSequentialGroup()

 .add(35, 35, 35)

 .add(Frequency1)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel15, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 71,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)))

 .add(121, 121, 121))

 .add(layout.createSequentialGroup()

 .add(76, 76, 76)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(Time1)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel4, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 155, Short.MAX_VALUE))

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING)

 .add(org.jdesktop.layout.GroupLayout.LEADING, layout.createSequentialGroup()

 .add(jLabel6)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel7, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 147, Short.MAX_VALUE))

 .add(org.jdesktop.layout.GroupLayout.LEADING, layout.createSequentialGroup()

 .add(jLabel11)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel9, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 147, Short.MAX_VALUE))

 .add(org.jdesktop.layout.GroupLayout.LEADING, layout.createSequentialGroup()

 .add(jLabel13)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(jLabel12, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 147, Short.MAX_VALUE)))

 .add(8, 8, 8)))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING, false)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, NumPill4,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, NumPill2,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, NumPill1,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .add(NumPill3))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING)

 .add(jLabel14, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 160, Short.MAX_VALUE)

 .add(org.jdesktop.layout.GroupLayout.LEADING, jLabel10,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 160, Short.MAX_VALUE)

71

 .add(jLabel16, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 160, Short.MAX_VALUE)

 .add(org.jdesktop.layout.GroupLayout.LEADING, jLabel5,

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 160, Short.MAX_VALUE))

 .add(140, 140, 140))

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 85,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 567, Short.MAX_VALUE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 123,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(62, 62, 62))

);

 layout.setVerticalGroup(

 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .addContainerGap()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(Description)

 .add(jLabel1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 32,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(18, 18, 18)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(8, 8, 8)

 .add(jLabel3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 16,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(layout.createSequentialGroup()

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.UNRELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(Frequency)

 .add(jLabel2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 27,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))))

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(layout.createSequentialGroup()

 .add(34, 34, 34)

 .add(jLabel8, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 16,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(layout.createSequentialGroup()

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.UNRELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(TimesPerDayA)

 .add(JLab3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 26,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(Time1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 16,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(NumPill1)

 .add(jLabel4, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 31,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jLabel5, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 28,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jLabel6)

 .add(NumPill2)

 .add(jLabel7, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 23,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jLabel16, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 29,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

72

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jLabel11)

 .add(NumPill3)

 .add(jLabel9, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 32,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(jLabel10, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 26,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jLabel13)

 .add(NumPill4)

 .add(jLabel12, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 29,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jLabel14, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 25,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 101, Short.MAX_VALUE)

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(Frequency1)

 .add(jLabel15, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 33,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .add(102, 102, 102))

 .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup()

 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)

 .add(jButton2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 43,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 .add(jButton1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 41,

org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())))

);

 java.awt.Dimension screenSize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-854)/2, (screenSize.height-563)/2, 854, 563);

 }// </editor-fold>

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 pill.setTotalPillsInserted(0);

 WindowManager.switchWindow(this, 6);

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 try {

 XmlDAO xmlDAO = new XmlDAO("Pill.xml");

 ArrayList<Pill> pills = xmlDAO.read();

 pill.id = pills.size() + 1;

 pills.add(pill);

 xmlDAO.write(pills);

 BspDAO bspDAO = new BspDAO("Pill.bsp");

 bspDAO.write(pills);

 pill = null;

 } catch (FileNotFoundException ex) {

 Logger.getLogger(PillAddConfirmation.class.getName()).log(Level.SEVERE, null, ex);

 }

 WindowManager.switchWindow(this, 1);

 }

73

 private void formWindowGainedFocus(java.awt.event.WindowEvent evt) {

 jLabel1.setText(pill.getDesc());

 jLabel2.setText(pill.GetDailyOrWeekly());

 int timeperdayA = pill.GetTimesPerDay();

 JLab3.setText(String.valueOf(timeperdayA));

 jLabel4.setText(pill.GetTimeOfDay1().equals("") ? "N/A" : pill.GetTimeOfDay1());

 double numPill1 = pill.GetNumberOfPills1();

 jLabel5.setText(numPill1 == 0 ? "N/A" : String.valueOf(numPill1));

 jLabel7.setText(pill.GetTimeOfDay2().equals("") ? "N/A" : pill.GetTimeOfDay2());

 double numPill2 = pill.GetNumberOfPills2();

 jLabel16.setText((numPill2 == 0 ? "N/A" : String.valueOf(numPill2)));

 jLabel9.setText(pill.GetTimeOfDay3().equals("") ? "N/A" : pill.GetTimeOfDay3());

 double numPill3 = pill.GetNumberOfPills3();

 jLabel10.setText(numPill3 == 0 ? "N/A" : String.valueOf(numPill3));

 jLabel12.setText((pill.GetTimeOfDay4().equals("") ? "N/A" : pill.GetTimeOfDay4()));

 double numPill4 = pill.GetNumberOfPills4();

 jLabel14.setText(numPill4 == 0 ? "N/A" : String.valueOf(numPill4));

 double Pillsinserted = pill.getQuantity()*(numPill1+numPill2);

 pill.setTotalPillsInserted(Pillsinserted);

 jLabel15.setText(String.valueOf(Pillsinserted));

 // TODO add your handling code here:

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new PillAddConfirm().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JLabel Description;

 private javax.swing.JLabel Frequency;

 private javax.swing.JLabel Frequency1;

 private javax.swing.JLabel JLab3;

 private javax.swing.JLabel NumPill1;

 private javax.swing.JLabel NumPill2;

 private javax.swing.JLabel NumPill3;

 private javax.swing.JLabel NumPill4;

 private javax.swing.JLabel Time1;

 private javax.swing.JLabel TimesPerDayA;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel10;

 private javax.swing.JLabel jLabel11;

 private javax.swing.JLabel jLabel12;

 private javax.swing.JLabel jLabel13;

 private javax.swing.JLabel jLabel14;

 private javax.swing.JLabel jLabel15;

 private javax.swing.JLabel jLabel16;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 private javax.swing.JLabel jLabel5;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JLabel jLabel7;

 private javax.swing.JLabel jLabel8;

