Calibrated Eye Dropper

B'Ann Gabelt and Carol Rasmussen Department of Ophthalmology & Visual Sciences

> Eamon Bernardoni Jim Mott Brooke Sampone Sarah Switalski Michelle Tutkowski

Points of Interest

- Problem Statement
- Motivation
- Design Criteria
- Current Devices
- Design Alternatives
- Final Design
- Potential Problems
- Future Work
- References
- Questions

Problem Statement

- Department of Ophthalmology & Visual Sciences
- Glaucoma therapy testing using animals
- Use micropipettes to deliver drugs in 5 μ L volumes
 - Time consuming
 - Endangers the animals
 - Inaccurate placement of drops
- Must optimize accuracy, efficiency, and animal safety in drug delivery

Benicia/site/tools.html

Motivation

- What is Glaucoma?
 - Eye disease where pressure slowly rises
 - Causes optic nerve damage which may lead to vision loss
- Medication available in the form of drops or pills
- Drops must be delivered to central cornea
- Animal testing to learn effects of drugs in the treatment of glaucoma

Design Criteria

- Delivers 5μ L with less than 1% error
- At least 3.5" length
- Prevents eye injury
- Minimize time per delivery
- Delivers different viscosities
- 2,000 uses per month
- \$200 budget

Current Devices

MiniFIX from Dynalab

http://www.dynalabcorp.com/new s_micropipette.asp

Microzipette Hand Held Dispenser

http://uk.vwr.com/app/Header?tmpl=/jenc ons/microzip.htm

Micropipette Plus from Eppendorf

http://www.eppendorfna.com/script/binres.p hp?RID=88121

Miniaturized Pipette

- Retains 5 µL drop accuracy
- Increases stability in hand
- Condense spaces between internal elements
- Prefabricated spring and piston calibrated to 5 μL
- Shortened shaft for piston
- Reduced but ergonomic gripping area

Flexible Straw

- 5-15 mL holding tank
- Flexible tubing from tank to pipette tip
- One-way valve to prevent spilling
- Move to tip to draw up drug
- Move away to dispense
- Disposable holding tank and tubing

Positive Displacement

- 5-15 mL reservoir with tube
- Displacement by disposable piston
- Drug flows from reservoir into tip due to gravity
- Piston forces liquid out
- High accuracy

http://www.calibrationtech.ie/admin/UserFiles/Image/tech_inf o_pipette_5.JPG

Sliding Reservoir Design

- Track incorporated into micropipette
- Reservoir attached to sliding track
- Track extends manually
- Rotation allows correct reservoir position

Eppendorf Clip

- Removable Eppendorf on side of pipette
- Attaches to a cap shaped part
- Secure fit, can be set on side
- Pipette refilled normally
- Eppendorf returned to cap during dispensing
- Air displacement, standard tips and Eppendorfs

Design Matrix

Criteria (possible points)	Flexible Straw	Eppendorf Track	Positive Displacement	Eppendorf Clip
Accuracy (30)	27	30	24	30
Speed (25)	20	18	25	22
Size/Safety (20)	17	17	17	17
Cost (10)	5	8	3	10
Feasibility (10)	6	8	1	9
Ease of Use (5)	3	4	3	4
TOTAL (100)	78	85	73	92

Potential Problems

- Location of Eppendorf cap on pipette
 - Interference with hand and tip visibility
- Removal of Eppendorf cap
- Miniaturizing the pipette/fabrication
 Very tight tolerances
- Calibration

Future Work

- Finalize Design Specifics
 - Dimensions
 - Eppendorf cap connection
 - Placement of eppendorf
 - Overall shape/aesthetics
 - Incorporate all factors of ergonomics
- Build a Prototype
 - Adaptation/modification of commercially available parts
- Testing
 - Water Test
 - Assembly/disassembly
 - User compatibility

References

- Department of Ophthalmology & Visual Sciences
- http://www.nei.nih.gov/health/glaucoma/glaucoma_facts.asp
- http://www.calibrationtech.ie/admin/UserFiles/Image/tech_in fo_pipette_5.JPG
- http://www.dynalabcorp.com/news_micropipette.asp
- http://uk.vwr.com/app/Header?tmpl=/jencons/microzip.htm
- http://www.eppendorfna.com/script/binres.php?RID=88121

Questions?

