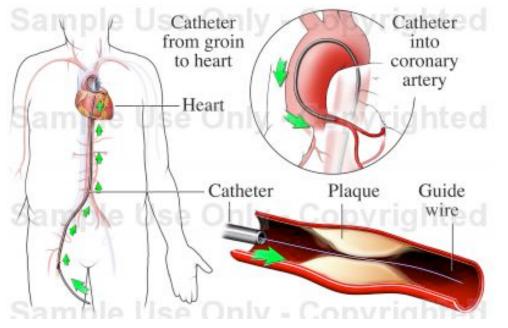
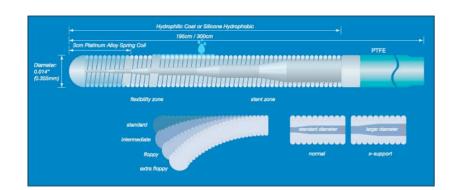
Manipulatable Intracoronary Wire

Team Members:

Allison McArton Angwei Law Grant Smith Padraic Casserly

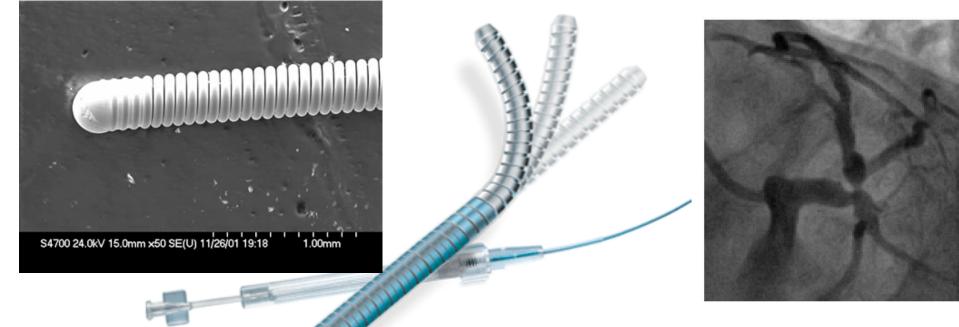
Client: Dr. Vik Chhokar, Dept. of Medicine


Advisor: Prof. John Webster, Dept. of Biomedical Engineering


Outline

- Guidewires and You
- Guidewire Design
- What We Want...
- Design Requirements
- Solution Ideas
- Evaluation of Ideas
- Future Work

Guidewires and You

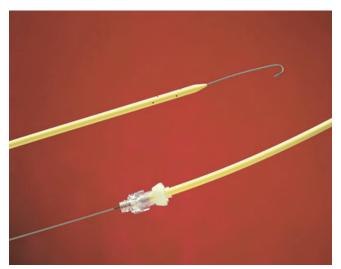

- Inserted distally in the groin or arm
- Maneuvered to position in coronary arteries
- Inserted past blocked region
- Delivery mechanism for stents
- Typically 350 µm in diameter and 150-350 cm long

Guidewire Design

- Stainless steel or Nitinol core
- Platinum outer coil wire at distal end
- Soft polymer coating and tip
- Problems with previous steerable designs

What We Want...

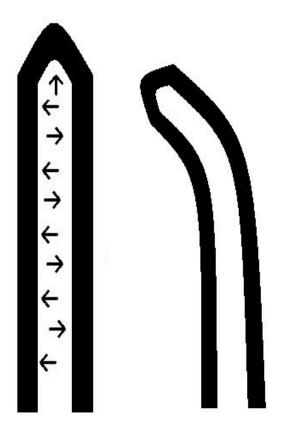
A novel coronary guidewire is to be developed such that torqueability along the wire's entire length is maintained and the wire's tip conformation can be changed in vivo via external operation


PDS

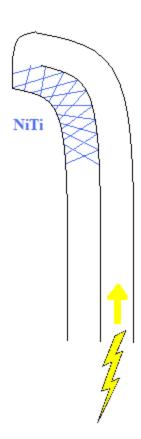
Design Requirements

- Biocompatible/ percutaneous
- Steerable and torqueable
- Maximum diameter of 350 µm
- Product Characteristics
 - Durable in tortuous environments
 - Easily manipulated
- Miscellaneous

Design Idea #1: Sheath


- Wire set as J-shape
- Wire straightens when sheath pushed over tip
- Could also be implemented vice versa
- Already used on a larger scale

https://lifeassistshop.life-assist.com/ CatalogImages/FullSize/01_at2780a.jpg


Design Idea #2: Pneumatic

- Wire pre-stressed in a curved state
- Hollow core leading to distal cavity
- Pressurization of internal air straightens wire

Design Idea #3: Memory Metal

- Nickel Titanium/Nitinol
- Shortens when heated to transformation temp
- Crystal structure
- Can be heated with electricity

Design Matrix

CRITERIA	WEIGHT	SHEATH	PNEUMATIC	MEMORY METAL
Ease of Manufacturing	35	30	20	25
Performance	35	25	30	30
Ease of Use	20	16	20	20
Monetary Cost	10	9	8	7
TOTAL	100	80	78	82

Future Work

- Determine most suitable method to bind Nitinol wire to stainless steel wire
- Obtain Nitinol wire with desired phase transformation temperature
- Construct a scaled-up prototype
- Carry out testing

Acknowledgements

- Dr. Vik Chhokar
- Prof. John Webster
- Prof. Wendy Crone

