

Transcervical Chronic Villus Sampling Model

Advisor – Dr. Pam Kreeger

Client - Jesus I. Iruretagoyena, M.D.

Team Members Derek Klavas – Leader Jonathan Mantes - BSAC Andy LaCroix - BWIG Mason Jellings - Communicator

Overview

- · Problem Statement
- Motivation
- Background
- · Client Requirements
- Design 1
- Plastic sheet uterus
- Design 2
 - Plastic sheet with elbow

- Design 3
 - Rigid model with elbow
- Design Matrix
- Future Work
- References
- Questions

Problem Statement

- To develop a realistic model to replicate the anatomy of a pregnant woman
 - Natural feel
 - Ultrasound image
- Construct the model out of affordable, "ultrasoundable" materials
- Model used repeatedly to practice transcervical CVS procedure
- · Easy setup and clean up

WISCONSIN

5

http://www.dhss.mo.gov/Genetics/T alkCornerArchives/7_07PrenatalDia gnostic.html

Motivation

- · Most expecting parents want to know
- CVS allows access to this knowledge
- The CVS procedure is very difficult
 Accompanied by significant risks
- Currently, instruction and practice carried out during actual procedure
- · No simulation exists
- Creating a model to simulate procedu
 - Reduces risk to patients
 - Increases successful sampling rate
 Provides access to more information

WISCONSIN

http://www.dhss.mo.gov/Genetics/T alkCornerArchives/7_07PrenatalDia gnostic.html

Chronic Villus Sampling

- Genetic screening of fetus
- Earlier diagnosis than amniocentesis
- Two approaches
 transabdominal
 transcervical
- Risks (low, 0.2-0.4%)
 Miscarriage
 Birth defects
- Chorionic villus placental sample

http://www.uptodateonline.com/patients/content/im ages/obst_pix/Transcervical_CVS.jpg

Client Requirements

- Doctors and interns in a clinical setting
- · Highly limited by anatomy
- Points of emphasis:
- "Ultrasoundable"
 "Eacl" of conviv/ut/
- "Feel" of cervix/uterus material
- Concerned with ease of replacing amniotic sac and placental sample between uses

http://www.obgyn.net/pregnancy-birth/images/YDBimages/Fig13-05a_sm.jpg

Design 1 - Plastic sheet uterus

- Top half of uterus constructed of a thin plastic material
- Cervix and bottom half of uterus made of silicone polymer
- Cervix/uterus rotates
- Advantages
- Thin plastic ultrasound compatible
- Disadvantages
 Plastic not as strong
 - Not rigid
 - Amniotic sac "bubble"

WISCONSIN

Design 2 – Plastic sheet with elbow

- Top half of uterus constructed of a thin plastic material
- Cervix and bottom half of uterus made of silicone polymer
- · Cervix/uterus rotates
- Uterus elbow design
- Advantages
 - No amniotic sac "bubble"
 Thin plastic ultrasound compatible
- Disadvantages

Design Matrix

Plastic not strong/rigid

WISCONSIN

10

Design 3 – Rigid model with elbow

- Uterus and cervix constructed with Smooth-On EcoFlex
- Plastic bag filled with water to simulate amniotic sac
- Placenta and amniotic sac more stable
- Uterus elbow design
- · Cervix/uterus rotates
- · Advantages
 - No amniotic sac "bubble"
 - More rigid structure

Design Number	Realistic "Feel" (50)	Anatomical Accuracy (20)	Ease of Use & Setup (10)	Manufacturing (10)	Cost (10)	Total (100)
	20	15	6	10	10	61
	20	20	7	8	8	63
3	45	20	9	7	8	89

Future Work

- Manufacture design option
 #3
- Brainstorm and design a support system for the model
 - Raising and lowering capabilities
- Conduct "dry" test runs with client
- If time permits, design and build abdominal wall

11

http://wichita.kumc.edu/support/lab/imag es/female_reproductive.jpg

WISCONSIN MADISON

Questions?