

Abstract

Currently, our client, Dr. Medow is working with Professor John Webster and Elena Bezrukova in developing a sensor that will monitor intracranial pressure without the need for an internal power supply. This sensor will notify medical personnel when a cerebral spinal fluid drainage shunt has failed.

Our team contributed to this project by designing and manufacturing a toscale prototype and a user interface system that takes the signal from the sensor and translates it into pressure.

Background/Motivation

Hydrocephalus

 Condition of excessive accumulation cerebrospinal fluid in the brain [1] •Results in abnormal widening of spaces in the brain ventricles [1] •Can cause seizures, mental disability, enlargement of head, and death [1]

Ventriculoperitoneal Shunt System

•Relieves pressure in skull

•Dispenses spinal fluid from ventricles to abdominal cavity

Problems with Shunt System

- •50% of shunts fail within the first 2-3 years
- Infection
- •Obstruction
- •Outgrowing the shunt
- Requires frequent medical evaluations

Current Intracranial Pressure Sensor

- •Monitors the shunt system
- •Detects increases/decreases in intracranial pressure
- Limited to temporary implantation
- •Hazardous

Design Criteria

<u>Capsule</u>

- •Material must be biocompatible, and non-metal
- •Capsule must be a maximum 3 mm in width and 15 mm in length
- Needs to be implanted and removed easily
- •Must have a lifetime between 10-20 years
- •Pressure readings can not drift more than 0.5 mmHa per year

User Interface

- •Must display a pressure graph in real time
- •Should store past test results
- Must display pressures between
- -30-100 mmHg
- •Must be user friendly

5 mm Skull Skull

Prototype design

INTRACRANIAL PRESSURE SENSOR: DETECTION OF SHUNT MALFUNCTION IN HYDROCEPHALUS PATIENTS

Brad Lindevig, Nicholas Shiley, Evan Flink, Luke Juckett

Department of Biomedical Engineering

Advisor: Professor Dennis Bahr & Elena Bezrukova Client: Dr. Joshua Medow, M.D.

Fabrication

Capsule and Spacer

- Made of acetyl copolymer
- •Spacer is lathed to 4 mm in diameter
- •Center hole is drilled with 3 mm diameter drill bit
- •Spacer glued to cellulose acetate transparency
- Both coils and 2 connecting wires are sealed within spacer
- Spacer is glued to capsule

Capsules

Membrane Coils

Cross-sectional view of sensor

Spacer and coil glued to membrane

Membrane

•Cellulose acetate transparency •0.1 mm thick

Membrane Deflection Values

Pressure	Membrane Deflection	Expected change in capacitance	Expected resonant frequency
-30 mmHg	0.0125 mm	-84.8 fF	45.7 MHz
100 mmHg	0.0415 mm	94.8 fF	43.22 MHz
ioi out out	And Barle Barl	Mem	brane

Spacer

Cellulose Acetate wrapped around coil

User Interface

N+

1236

- •Created on LabView 8.2
- •Detects power drop from the interrogating device
- •Calculates the distance from start of the sweep to resonant frequency peak
- •Tracts the rectified sweep of 42 46 MHz which matches coil response
- •ICP pushes the coils closer together thus changing the resonant frequency
 - Increase in ICP moves the resonant frequency peak to the right
 - •Decrease in ICP moves the resonant frequency peak to the left
- •Saves data to specified file

1.5

0.5 plitude -0.5

Coils

- •44 Gauge wire and base wire are fed through plastic disks
- •Glued between 2 thin (1.5 inch diameter) plastic sheets
- •Pressed between 2 additional 1.5mm thick (1.5 inch diameter) plastic disks
- •Wire is then wound around the base wire until desired diameter is achieved
- Base wire is removed

Fabrication of coil

Final coil product

Testing

•Measured the resistance and inductance of each individual coil •Measured inductance and capacitance of best pair of coils

Coil Size	Inductance	Capacitance	Resonant Frequency
2.5 mm diameter (20 turns)	8.0 µH	1.6 pF	44.5 MHz

60

Capacitance-Inductance Meter

Interrogating Device Acuracy of User Interface

Accuracy of User Interface Peak Detection algorithm. SD of peak detection points are no more than .004.

Theory

 $3(m^2-1)r^4P$ $y_c = 16m^2E_{y}t^3$

Membrane deformation equation

Future Work

Photolithography

•Uses acid and light to etch grooves into substrate

Mass producible

•More reliable and repeatable than hand-wound coils

Saline Solution

•Plot frequency vs. pressure •Biomimetic

Acts as a capacitor

Testing Negative Pressure

 Connect to vacuum trap and aspirator Vary the negative pressures within the column by changing the rate of water flow of the aspirator

Record data

Testing Positive Pressure

 Calculate density of water used to fill water column

• Fill column with water to reach height that correlates with desired increment in pressure

"Neurological Disorders - Hydrocephalus." Schneider Children's Hospital Home Page. Web. 09 Mar. 2010.

http://www.schneiderchildrenshospital.org/peds_html_fixed/peds/neu ro/hydro.htm>. [1]

C. Collins. Miniature Passive Pressure Transensor for Implanting in the Eye. IEEE Transactions on Biomedical Engineering 14-2 (1967), 74-83. [2]

Phantom tester

Top view of coil (left) and crosssectional view of sensor (right)

Hand wound coils (left) vs. photolithography coils (right)

> Professor Dennis Bahr Dr. Joshua Medow, M.D. Elena Bezrukova Professor Thomas Yen Lacey Halfen Professor Sergei Bezroukov