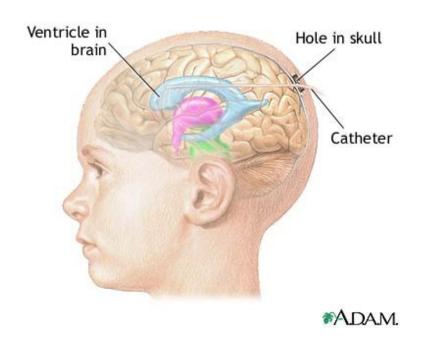
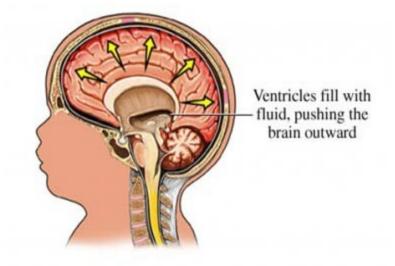
INTRACRANIAL PRESSURE SENSOR

Brad Lindevig- Leader Luke Juckett- BWIG Evan Flink- Communicator Nick Shiley- BSAC


Client: Dr. Joshua Medow, MD Advisors: Professor Dennis Bahr and Elena Bezrukova

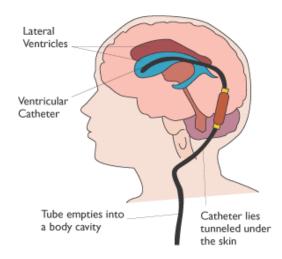
Outline

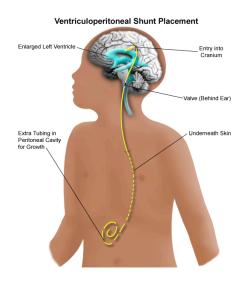
- Problem Statement
- Background Information
- Client Specifications
- Designs
 - Coil fabrication
 - User Interface
- Future Work


Problem Statement

To develop a wireless intracranial pressure (ICP) sensor that passively monitors ICP, and a user interface that will display changes in pressure

Hydrocephalus

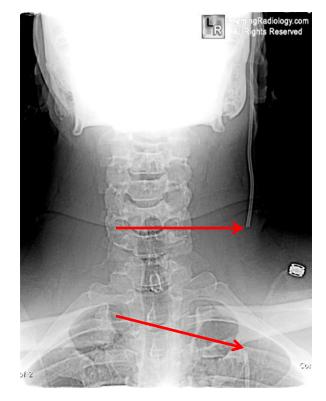

- Accumulation of cerebrospinal fluid (CSF) in brain
- Increased intracranial pressure
 - Enlargement of head
 - Convulsion
 - Mental disability
 - Death
- 1 out of 500 births



Current Treatment

Ventriculoperitoneal shunt systems

- Relieves pressure inside the skull
- Travels subdermally from ventricles to abdominal cavity
- One-way valve controls drainage


Problems with current design

Shunt

- 50% of shunts fail within the first two years
- Requires frequent medical evaluations
- Hard to determine malfunctioning

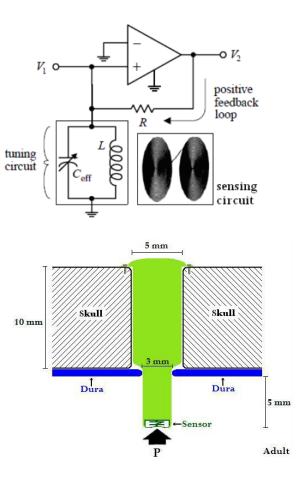
Pressure Sensor

- Limited to temporary implantation
- Hazardous

Shunt fracture

Client Specifications

ICP Device


- 3mm width; 15mm depth
- Implanted and removed easily
- Durable (10 to 20 years)
- Cannot drift more than 0.5mmHg/year
- User Interface
 - Measure positive and negative pressure
 - (-30 to 100mmHg)
 - Real-time measurements
 - Show graph of signal

ICP Device Design

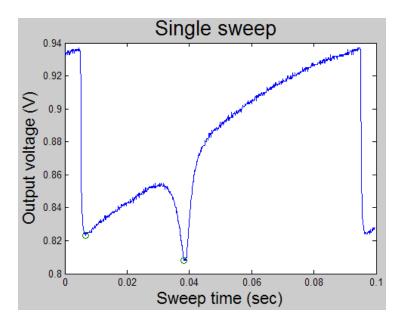
Biocompatible

No interference with signals

- Sensor at base of probe
 - Two coils of wire form tank circuit
 - Distance between coils affects resonant frequency
- Device screwed into skull

Coil Fabrication

Photolithography


- Uses etched grooves and light
- Mass producible
- Reliable and repeatable
- Hard to obtain electrical connection between coils
- Hand-wound coils
 - Easily designed
 - Unreliable
 - Not mass producible

User Interface

- Measure resonant frequency peak
- User friendly
 - Ability to save data
 - Easily interpreted graphs

Peak Detection

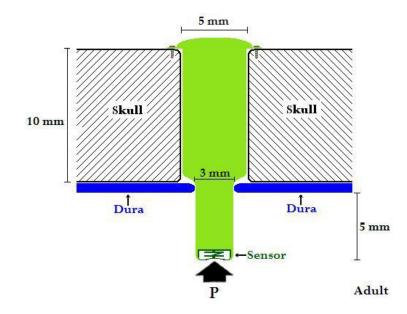
- Detects peaks and valleys at a given threshold
- Finds amplitude
- Measures distance of where peak or valley occurs
- Pros
 - Accurate
 - Locate one signal
- - Determining threshold value

Tone Measurement

- Finds highest amplitude
- □ Find frequency of a single tone
- Can scan a frequency range
- Pros
 - Accurate
 - Locate one signal
- - Works best with sine waves
 - More research is needed

Amplitude

Calculates average amplitude


- Pros
 - Simple
 - User friendly
- - Unreliable

Design Matrix

LabVIEW Functions	Weight	Peak Detection	Tone Measurement	Amplitude
Accuracy	40	38	30	25
Ease of design	25	24	15	18
Simplicity	20	10	10	5
User Friendly	15	18	18	14
Total	100	90	73	62

Future Work

- Test tank circuit
- Finalize capsule design
- Finalize fabrication design
- Equation that relates pressure and frequency

Acknowledgements

- Dr. Joshua Medow, MD
- 🗆 Elena Bezrukova
- Professor Dennis Bahr
- Professor Amit Nimunkar
- Professor John Webster