Appendix C

Workload Calculations
Hooke's Law
$F=k x$
Potential Energy Stored in a Spring
$U=\frac{1}{2} k x^{2}$

Based on our Model
$F=\frac{2 T}{\cos Z}$
$T=k y$
$F=\frac{2 k y}{\cos Z}$
$U=\int F$
$U=\int \frac{2 k y}{\cos Z} d y$
$U=\frac{k y^{2}}{\cos Z}$
Figure 10: The right triangle on the left is a zoomed in model of the free body diagram of our pedal on the right. The force F is from the patient's foot, and the two tensile forces, T, are from the exercise tubing.

The angle Z changes slightly during the motion of our device. As the foot pedal is pushed away from the user, the angle decreases. However, because Z is always fairly small (around 5°), $\cos (Z)$ will be approximately 1 and can be ignored for ease of calculation (small angle approximation theorem).
$U=k y^{2}$

From our tensile testing, the k value for the red 20 pound resistance tubing is 1.4234 pounds force per inch, or $\mathbf{1 7 . 0 8} \mathbf{l b f} / \mathrm{ft}$. The displacement of the pedal for a patient with a height of 6^{\prime} is 8.5 inches $(.71 \mathrm{ft})$, the y value. This value was acquired by the following calculations:

a

Figure 11: The isosceles triangle is a schematic of a patient's legs while in the bore. The hip to knee length is approximately the same length of the knee to ankle (22 inches on a 6' patient). The height of the bore where the legs will be positioned is 13 inches.

Pythagorean Theorem
$a^{2}+b^{2}=c^{2}$
$a^{2}+13^{2}=22^{2}$
$\mathrm{a}=17.75 \mathrm{in}$
The total length of the leg is 44 inches, and $2 \mathrm{a}=35.5$ in
$44-35.5=8.5$ inches $=y=.71 \mathbf{f t}$
Continuing the workload calculation:
$U=\left(17.08 \frac{l b f}{f t}\right)(.71 f t)^{2}=8.57 \mathrm{ft} \cdot \mathrm{lbf}$
At a cadence of 120 individual leg presses a minute
$P=8.57 \mathrm{ft} \cdot \mathrm{lbf} \times 120 \frac{\text { cycles }}{\text { minute }}=1028.3 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\text { minute }}=\mathbf{2 3 . 2} \mathbf{W a t t s}$
Using the maximum resistance available for our device (10 lb tube, 15 lb tube, and 20 lb tube with respective k values $.72,1.07,1.42$), the following wattage can be acquired:
$k=0.72+1.07+1.42=3.21 \frac{l b f}{i n}=38.52 \frac{l b f}{f t}$
The k values can be added because the resistance tubes are used in parallel
$U=\left(38.52 \frac{l b f}{f t}\right)(.71 f t)^{2}=19.42 f t \cdot l b f$
At a cadence of 120 individual leg presses a minute
$P=19.42 \mathrm{ft} \cdot \mathrm{lbf} \times 120 \frac{\mathrm{cycles}}{\text { minute }}=1028.3 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\text { minute }}=\mathbf{5 2 . 6} \mathbf{W a t t s}$

