Heart & Breath Sound Amplifier

Drew Birrenkott, Caleb Durante, Jared Ness, Bradley Wendorff University of Wisconsin - Madison, BME 201

> Scott Springman, M.D. - Client Willis Tompkins, Ph.D. - Advisor

Problem Statement

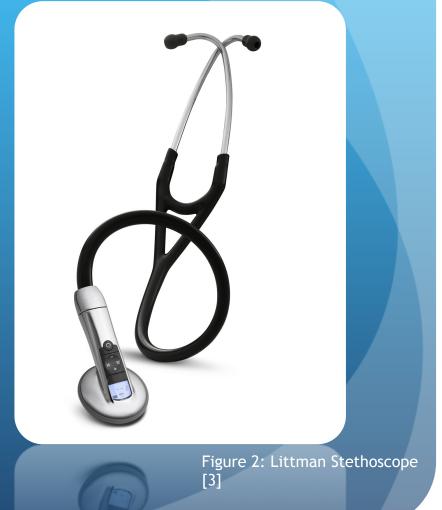
- Increase stethoscope functionality three fold
 - Convert sound waves to filterable, amplifiable signal
 - Increase stethoscope reach so client can adjust medication and monitor heart beat
 - Allow dual listening capabilities: headphones and speaker
 - Used in both surgical and educational settings

Design Constraints

- Use existing stethoscope design but add electronic functionality
- Preserve diagnostic information
- Transportable to multiple operating rooms
- Cannot create electrical interference
- Budget \$100 to \$300

Background: Stethoscope

- Most common basic medical diagnostic tool
- Operates acoustically
 - Heart beat, fluid flow cause diaphragm to vibrate
 - Diaphragm vibrates in bell causing acoustic noise to pass up tubing
 - Tube acts a low pass filter
 - Sound passes through earpieces to listener


• [1]

Background: Competition

- 3M Littman 3200 Electronic Stethoscope
 - Very expensive
 - Doesn't increase stethoscope length
 - Not compatible with other heads (stethoscope, esophageal tube)
 - No external speaker

[3]

MSRP\$496.00

Design Matrix: Microphone Type

Microphone Type						
Factors	Weight	Rating (1-10)				
		Condenser Mic	Dynamic Mic	Piezo Mic		
Cost	0.10	4	5	2		
Sensitivity/Fidelity	0.40	9	4	3		
Size	0.25	7	6	4		
Simplicity/Circuit Requirements	0.25	4	8	8		
TOTAL	1.00	6.75	5.60	4.40		

Figure 3: Microphone Matrix

Design Matrix: Power Source

Power Source						
Factors	Weight	Rating (1-10)				
		Batteries	External Power			
Life	0.30	2	9			
Life-Cycle Cost	0.15	3	4			
Portability	0.35	9	2			
Client Preference	0.20	7	5			
TOTAL	1.00	5.60	5.00			

Figure 4: Power Matrix

Design Matrix: Microphone Location

Microphone Location							
Factors	Weight	Rating (1-10)					
		Inside Tubing	Inside Diaphragm				
Fidelity	0.35	7	4				
Stability/Portability	0.10	4	7				
Aesthetics	0.05	5	8				
Multifunctionality	0.10	8	2				
Safety	0.40	8	2				
TOTAL	1.00	7.10	3.50				

Figure 5: Location Matrix

Microphone Tube Coupling

🖛 Ø14 –

7

5.0.40

Ø10

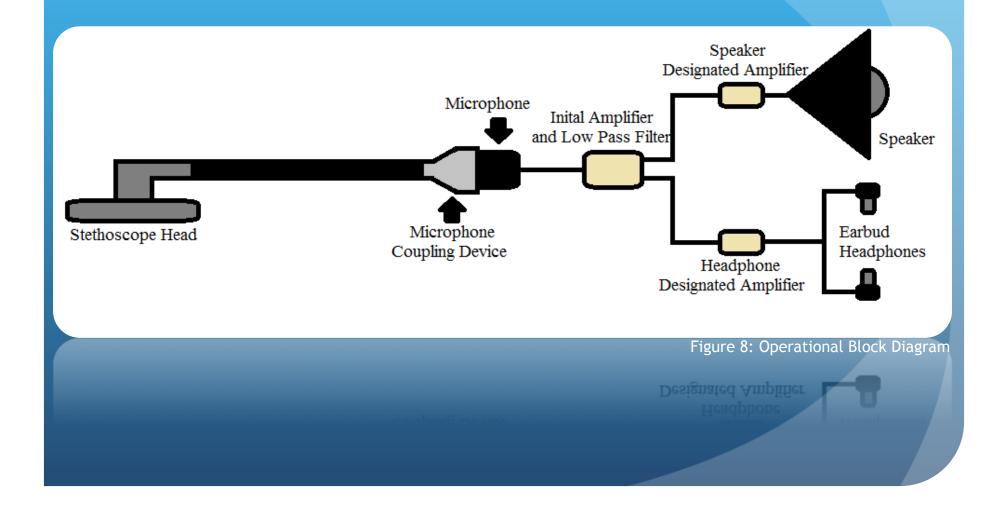

ർദ

Figure 7: Coupling Schematic

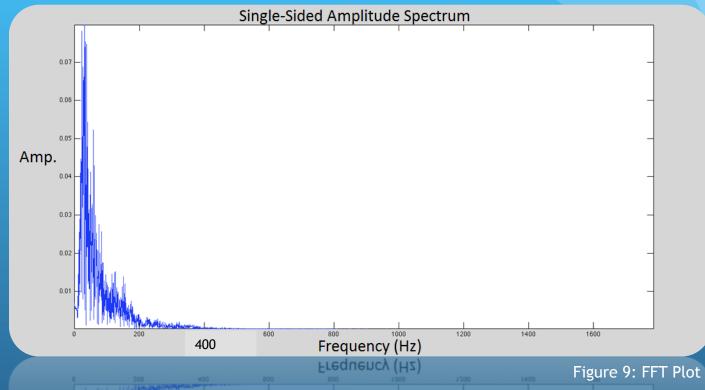
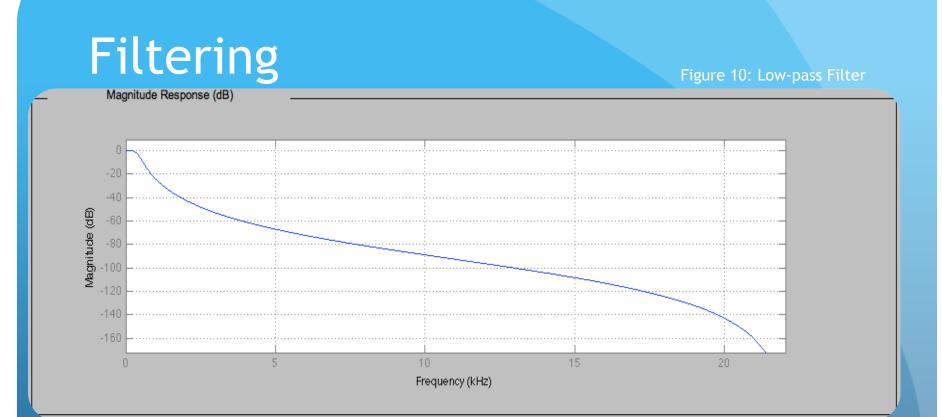


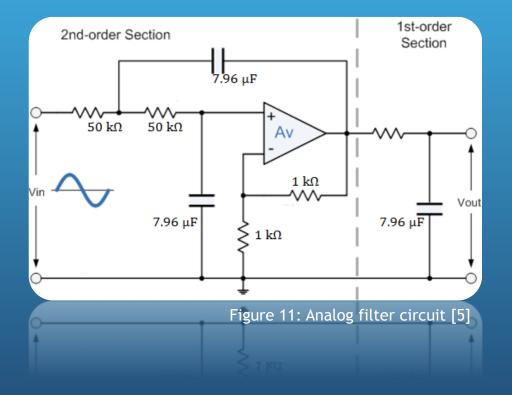
Figure 6: Coupling Model

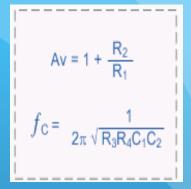

General Setup: Block Diagram

Sample Recording/Signal Processing

- FFT Plot
 - Locate and identify frequencies of interest (approximately 0-400 Hz)
 - Heart Sounds: <300Hz [4]

- After picked up by microphone, signal passes through active low-pass Butterworth filter
- Third-order filter [5]
 - Better isolation of pass band
 - less excess noise


Heartbeat Recordings



Heartbeat

Filter Circuit

Gain (A): TBD

Corner Frequency: 400Hz

Design Specifications

- Amplify heart to minimum of 60 dB
- Circuitry housing no larger than 15cm x 15cm x 15 cm cube
- Weight under 3kg
- Device reach at least 3 meters
- Maintain Frequencies of 300Hz and lower

Future Work

- Determine desired gain factor for circuit
- Select Op Amp, Resistors, and Capacitors accordingly
- Select low-profile speaker for application
- Test apparatus on patient with irregularity of heart function (i.e. murmur, stuck valve, etc.)
- Determine if apparatus preserves diagnostic information
- Rework filter accordingly

Acknowledgements

- Dr. Scott Springman
- Professor Willis Tompkins
- Tim Balgemann

References

- [1] Rappaport, M.B., Sprague, H.B. 1941. Physiological and Physical Laws That Govern Auscultation and Their Clinical Application: The Acoustic Stethoscope and the Electrical Amplifying Stethoscope and Stethograph. *The American Heart Journal* 21(3) 257-318.
- [2] Medisave. 2011. "Tytan Stethoscope." <u>http://www.medisave.co.uk</u> (accessed March 2, 2011).
- [3] 3M. 2011. "3M Littmann Electronic Stethscope Model 3200." http:// www.shop3m.com/3m-littmann-electronic-stethoscope-model-3200.html? WT.mc_ev=clickthrough&WT.mc_id=shop3m-AtoZ-Littmann-Stethoscopes (accessed March 2, 2011).
- [4] Jin, F., Satter, F., Goh, D.Y.T. 2009. A filter bank-based source extraction algorithm for heart sound removal in respiratory sounds. *Computers in Biology and Medicine* 39: 768-777.
- [5]Electronics-Tutorials. 2011. "Butterworth Low Pass Filter." <u>http://www.electronics-tutorials.ws/filter/filter 8.html</u> (accessed March 2, 2011.