ENDOSCOPIC MEASUREMENT DEVICE TO MONITOR TUMOR GROWTH IN VIVO

Clients: Dr. William Dove, Dr. Jim Amos-Landgraf, Amy Irving – UW Dept. of Oncology Advisor: Amit Nimunkar

Leader: Blake Marzella Communicator: Justin Cacciatore BWIG: Mike Nonte BSAC: Mike Konrath

Background

Colorectal cancer
Animal model with rats and mice
Colonoscopy

Current Devices

- □ Rat Endoscope: Storz 7219BA
- □ Mouse Endoscope: Storz 1232AA
- Lens Creates a fish-eye distortion
- No way to determine quantitative size of objects in the image

Problem Statement

- No quantitative measurement, in vivo
- Measure tumor response to drugs
- □ Volume change
- Diameter, Cross-sectional area

Client Requirements

- Must not harm tumor, animal
- Relative volume changes over time
- □ 10 15% error acceptable
- □ \$1000 budget

Alginate Cast

 Insert an angioplasty balloon into the colon

Alginate Cast Cont.

Inflate balloon to create blockage

Fill blocked off area with alginate.

□ Allow to gel

Alginate Cast Cont.

Deflate balloon

Alginate
 detaches from
 colon walls

Alginate Cast Cont.

 Fill tumor casts with clay to make molds
 of each tumor

3D Image

- Apply filtering to correct for fisheye distortion
- Attach endoscope to moving stage with micrometer
 to know precise movements of the device

3D Image Cont.

- Take several images while moving in a line in a defined y axis and defined x axis
 - Measure exact location of endoscope at each point
- Use ImageJ software to stich together images into a 3D mesh
- Use 3D image analysis software to determine volume of tumor

Physical Measurement

- Model as Ellipsoid
 - $\square V = 4\frac{\pi}{3}R_1R_2R_3$
- Caliper device through working channel
- □ Need to modify equation
 - Determined experimentally
 - Animal sacrifice

Harder for smaller, flat tumors

Final Design Selection

	Ease of Procedure	Time Requirements	Cost	Estimated Accuracy	Adherence to Protocol	Repeatability	Potential Damage to Tumor	Applicability to Different Tumor Shapes	Resolution	Total
Maximum Points	10	10	5	15	5	15	15	10	15	100
Alginate Cast	8	8	2	12	1	12	6	8	15	72
3D Image	4	3	5	9	5	8	15	8	10	67
Physical Measurement	5	5	1	7	5	6	12	7	5	53

- We will be moving forward with the alginate cast idea
 - Simplicity
 - Accuracy

□ However, the 3D image idea is still an option

Future Work- Alginate Cast

- Acquire alginate and test properties
 - Gel time
 - Preparation time
 - Consistency
 - Elasticity
- Test procedure on straw model
- Purchase angioplasty balloons
- In Vivo testing

Future Work- Image Analysis

- □ Find Program to fix "fish-eye" problem
- Test Image J stitching and analysis on shape of known volume (ex. a marble)
- Build
 - Stage fixtures
 - "Breadboard"
 - Animal Constraints
- In Vivo testing

Acknowledgements

- Amit Nimunkar
- Dr. William Dove
- Dr. Jim Amos-Landgraf
- Amy Irving
- Keven Eliceiri

References

- Mai, K. et al. 2003. A Simple Technique for Calculation of Volume of Prostatic Adenocarcinomas in Radical Prostatectomy Specimens. In Pathology. 599 – 604
- Kuo, C., and P. Ma. "Ionically crosslinked alginate hydrogels as scalolds for tissue." *Biomaterials*. 22. (2001): 511-521. Print.
- stage: http://www.newport.com/store/product.aspx?id=140089&lang=1033

fisheye: http://en.wikipedia.org/wiki/File:Panotools5618.jpg

stitching: http://pacific.mpi-cbg.de/wiki/index.php/Screenshots

endoscope: http://www.karlstorz.de/cps/rde/xchg/SID-3DBA1B2C-2A313808/karlstorz-en/hs.xsl/2260.htm

