

Abstract

Approximately 1.1 billion people across the world live without access to clean drinking water. *BrightWater* provides an efficient, cost effective, self-sustaining water purification solution to reduce casualties from contaminated water consumption. Here, we present a prototype that uses solar energy to purify the water, regulate the water flow and act as the power supply.

Background/Motivation

- According to WHO, 1.6 million deaths per year are due to contaminated water
- Dr. Shropshire emphasized the need for clean water when he and his team of health-care professionals volunteer for medical outreach trips to developing regions of the world
- Hillside Clinic in Punta Gorda, Belize operates without a water purification system
- Water for sanitation directly from a well and import drinking water
- Drinking water costs approximately \$100 \$200 per month

Figure 1: Hillside Clinic

Figure 3: Water jugs in which the drinking water is imported in.

Figure 2: Water storage tanks on-top of the Hillside Clinic used for sanitation purposes.

Figure 4: A new chlorinator found at a nearby village.

• Possibility to impact other developing regions such as Haiti or Africa

- Purify water just as effectively as other water purification systems
- Must be made from materials found in the region of interest
- Transportable
- Low maintenance
- Cost effective
- Environmentally friendly

Figure 5: Transportation at the Hillside Clinic which can bring *BrightWater* to surrounding villages

Engineering World Health: BrightWater Filtration

Brad Lindevig, Nicholas Shiley, Karin Rasmussen, Claire Wardrop

Department of Biomedical Engineering

Advisors: Professor John Webster & Amit Nimunkar Client: Dr. James Shropshire M.D. & Evert Mangar

Proto

BrightWater Prototype

Figure 6: Full view of purification system (left). Close up of the solar panel and microcontroller (right)

Water Flow Control

- Photo-voltaic cells convert light into voltage.
- Microcontroller tells servo motor to open valve when the voltage rectified is sufficient enough to purify water
- Voltage from the solar panel is reduced by a 3rd by a voltage divider
- The microcontroller handles 5Volt inputs

Figure 7: Arduino Omega is used in the BrightWater prototype

- 1200mL sample fed through funnel
- Timed
- 50W uv B lamp, uv index of 2-5.
- 3 agar plates for each sample
- Dilute 1:100 ratio
- Record bacteria colonies 5 days after.

Figure 9: Experimental set up with *uv* source running parallel with Plexiglas box at a 6° angle

Figure 10: TiO2 + *uv* and *uv* effect on bacterial viability using *BrightWater* prototype. Averages: Pure = 128, Lake = 5293, UV = 6125, UV & $TiO_2 = 5289$

Main Compartment

- Made out of 9.525 mm thick Plexiglas
- Plexiglas ridges spaced approximately 10.16 cm apart
- Contains 6 mm diameter, 10 mm length borosilicate resin beads coated with titanium dioxide (TiO_2)
- Smaller substrates for TiO₂ means higher surface-volume-ratio • TiO₂ is a photo-catalyst
- Organic material is degraded to CO_2 and H_2O
- Borosilicate resin beads are *uv* penetrable

•OH +R \rightarrow intermediates \rightarrow CO₂ +H₂O **Figure 8:** Schematic of TiO_2 catalytic activity wit *uv* radiation from the sun (Ahmed, 2010).

Bacterial Regrowth

Figure 11 : TiO2 + uv (left) and uv (right) effect on bacterial regrowth using *BrightWater* prototype.

Results

- Appears to be less bacterial regrowth for $TiO_2 + uv$ experiment
- More bacterial viability experiments needed
- Refine experimental procedure

Finance

Material	<u>Cost</u>	<u>Reference</u>
5W Solar Panel	\$47.58	BP Solar
91.44 cm x 121.92 cm		
Clear acrylic Plexi-	\$30.85	Astronaut Plastics
glas sheet 9.525 mm		
thick		
3000, 6 mm diameter		
Borosilicate Glass	\$164.35	Fisher Scientific
Beads		
Microcontroller and	\$3.00	Daycounter
Server Motor		Engineering Services
500 grams of		
Titanium (IV) Oxide	\$89.90	Fisher Scientific
Anhydrous		
Water Valve	\$10.00	ACE Hardware
Transparent Tubing:	\$2.00	ACE Hardware

Table 1: Unit cost of *BrightWater* prototype

• Total unit cost of the *BrightWater* prototype is \$347.68 • Price of chlorination system range from \$150-\$1,000, maintenance \$225/year

• Installation of reverse osmosis system is approximate \$200, additional \$100 every three years

Future Work

• Recharge car battery with solar panel.

• Car battery will act as the power source for the motor and microcontroller

• Place water value at the bottom so contaminated water will continue to interact with TiO₂

• Use a 12 volt water solenoid valve for more accurate turns/voltage. • Insert custom made borosilicate glass cover over the top to seal main compartment

• Make the microcontroller and valve more dynamic with the amount of *uv* radiation available in the environment

• Research other substrates to coat with TiO_2

Coordinate with the Belizean Ministry of Health Department to implement *BrightWater* filtration system

References

- Amed S., Rasul M.G., Brown R., Hashib M.A. 2010. "Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: Ashort review." J. of Environ. Management.
- Water Supply, sanitation and hygiene development. 2011. World Health Organization. 23 February 2011
- <http://www.who.int/water_sanitation_health/hygiene/en/>. <u>Ultraviolet Water Purification – UV.</u> 2010. Home Water Purifiers and Filters. 12 February 2011 < http://www.home-water-purifiers-andfilters.com/ultraviolet-filter.php>.
- Dr. James Shropshire M.D.
- Kyana Young (Graduate Student) Professor Marc Anderson PhD.
- Amit Nimunkar PhD.
- Josh Zent
- Zach Vargas
- Pari Lingampally
- Evert Mangar
- Luke Voellinger