Cancer Cell Scaffold

Josh Kolz, Sarah Sandock, Vivian Chen, Sarah Czaplewski, Vanessa Grosskopf

Outline

- Background
 - Bioreactor
 - Cell Scaffold
 - MRI
 - Cancer cells
- Motivation
- Design
 - Criteria
 - Alternatives
- Matrix
- Final design
- Future work

Bioreactor & Scaffold

- System to grow and sustain cells
- Bioreactor encases cell scaffold
- Scaffold provides site for cells to attach

¹³C MRI Hyperpolarization

- Hyperpolarization: nuclear spin polarization of a material (¹³C, ¹H) far beyond thermal equilibrium
- MRI tracks decay of hyperpolarized proton
- Used to assess cancer malignancy and treatment
 - Glycolysis up-regulated in cancer cells
 - ¹³C-labeled pyruvate used to monitor glycolytic pathway

Experimental Cell Lines

- Cell Lines
 - Lymphoma K562
 - Leukemia NKL
 - Prostate Cancer: PC3, DU145, LNCap
 - Brain Glioma: U251, U87
 - Breast Cancer: T47D
- Characteristics
 - Self-proliferating
 - Overproduction of ECM
 - Increased ease of culturing

Project Motivation

- Controlled cell culture experiments provide superior method of monitoring cancer cell metabolism
- Bioreactor and cell scaffold required
- Scaffold must promote cell growth to a high density to track metabolism

Design Criteria

- Large surface area : volume ratio
- High cell density (50*10⁶ cells/ml)
- Maintain cell viability (~4 days)
- Allow perfusion of fluids
- Ensure proper inoculation
- Non-ferrous material

Encapsulation

- Calcium alginate bead with cells inside
- Primarily used with tumorous liver cells
- Grow to a desirable density
- Time consuming to construct
- Size, shape, and cell density can vary

Microcarriers

- Dextran (polysaccharide), glass, polystyrene (polymer)
- 125-300 µm
- Often used in bioreactors
- Coated or uncoated (collagen, FACT, ProNectin F)
- Different porosities and surface chemistries

Microcarriers

- Cytodex 3
 - Cross-linked dextran beads with collagen layer, microporous
- Biosilon Nunclon Delta Microcarriers
 - Polystyrene with surface treatment to promote adhesion, nonporous
- Sigma-Solohill Microcarrier Beads
 - Polystyrene beads coated with collagen, nonporous

ECM Scaffolds

- Cancer research commonly utilizes
 - Alginated scaffolds (bought/made)
 - Fibrin scaffolds (bought/made)
 - Collagen
- Lab-made options
 - Cheap
 - High surface area
- Tumor cell specific research
- Not present in bioreactor research

Hollow Fibers

- Tailored for use in a bioreactor
- Cartridge of many tubule membranes
- Large surface area
- Can be coated with ECM proteins
- Precedence with cancer cell lines
- Membranes cause noise in MRI

Design Matrix

Type of Matı	ix	Surface Area (Density) 25	Cell Specificity 20	Presence in Bioreactors 15	Cost 10	Change in Phenotype? 5	Viability 15	Ease of Fabrication 10	Total 100
Encapsulatio	on Calcium Alginate	21	14	12	9	5	15	1	77
Microbead	5 Cytodex 3	22	17	15	9	5	15	10	93
	Biosilon Nunclon microcarriers	23	19	15	8	5	15	10	95
	Collagen Coated Polystyrene microcarriers	23	19	15	9	5	15	10	96
Hollow Fibers		24	18	15	6	5	15	8	91
3-D Gel Structures	Algenated Bought/made	15	14	0	1/8	5	15	8/1	58
	Fibrin Bought/made	15	14	0	1/8	5	15	8/1	58
	Collagen	15	14	0	2	5	15	8	59

Final Design

Sigma-Solohill

- Polystyrene microcarrier
- Coated in collagen
- •T47D breast cancer cells
- Large surface area (3.6*10⁶ cm²/bead)
- \$5 / experiment (\$160.70/20g)

Future Work

References

Text

- Cell Max Hollow Fiber Bioreactor (2010). *Spectrum Labs*. Retrieved February 26, 2011, from http://www.spectrumlabs.com/cell/MaxCarts.html
- Chandrasekaran, P., Seagle, C., Rice, L., MacDonald, J., & Gerber, D. A. (2006). Functional analysis of encapsulated hepatic progenitor cells. *Tissue Engineering*, *12*(7), 2001-2008.
- Harris, T., Eliyahu, G., Frydman, L., & Degani, H. Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. *PNAS*, *106*(43), 18131-18136
- Keshari, K., Kurhanewicz, J., Jeffries, R., Wilson, D., & Dewar, B. Hyperpolarized 13C spectroscopy and an NMR-compatible bioreactor system for the investigation of real-time cellular metabolism. *Magnetic Resonance in Medicine*, *63*, 322-324
- Rowland, I., Peterson, E., Gordon, J., & Fain, S. (2010). Hyperpolarized13C MR. *Current Pharmaceutical Biotechnology*, *11*, 709-719.

Images

http://www.bioe.umd.edu/news/news_story.php?id=5312

http://www.bioprocessintl.com/multimedia/archive/00103/BPI_A_100807AR30_O__103800b.jpg

http://www.equl.com/products/image/e0156.jpg

http://www.gelifesciences.com/APTRIX/upp01077.nsf/Content/Products?OpenDocument&parentid=6669 21&moduleid=167176#content

Questions?

