Sensing Forceps

Alan Meyer – Team Leader Hope Marshall – Communicator Spencer Strand – BSAC Michael Scherer – BWIG

Advisor: Paul Thompson

Client: Michael Zinn & Carter Smith

Background

- Continuation of last semesters project:
 - By Stephen Young, Tanner Marshall, Kelsey Hoegh, Karin Rasmussen, Vinodh Muthiahto
- Universal in surgeries
- Different thresholds for different tissue
- Currently being researched
- Piezoresistive technology
- Strain Gauges

Motivation

- Determining tissue thresholds
- Teaching tool

Give real-time feedback

Client Requirements

- real-time display and feedback
- cost less than \$500
- universally compatible
- Do not encumber
- less than 250 grams
- withstand exposure to bodily fluids
- easy to read

Problem Statement

- No current way to measure the force exerted by the forceps
- Forceps that measure and display forces
 - Needed for research and surgical use in pediatrics
- Force display
 - Straightforward
 - Clearly readable
 - Non-cumbersome

Capture Program

Use LabVIEW or Java

Input data stream from USB microcontroller

 Convert strain gauge output to Newtons

Alternative Designs

1. Glasses Design


2. Monitor Design

3. Arm Band

Glasses Design

Removable display

Specialized film

LED numeric display

Flashing LED warning

Monitor Design

Mounted on mobile cart

Numerical Display

Stop Light Visual

Pitch Change Audi

Arm Band Design

Display mount on armband

Change in auditory alert volume

Change in stop light color

Design Matrix

							Total
Design	Feasibility	Cost	Durability	Sterilization	Ubiquitous	Cumbersome	score
Glasses Design	3	3	2	4	5	2	19
Monitor Design	5	4	5	5	3	4	26
Arm Band Design	5	4	5	3	3	2	22

Final Design

 Monitor mounted onto a rolling cart by a pivoting arm

Stop light thresholds

Numeric force

Auditory alert

Future Work

Acquire appropriate materials

Real time feedback

Testing

Decide on Compiler

References

- [1] Jacq, C., Maeder, T., & Ryser, P. (n.d.). Load sensing surgical instruments.
- [2] Hanna, Drew, Arnold, Fakhry, & Cuschieri. (n.d.). Development of force measurement system for clinical use in minimal access surgery.
- [3] Trejos, Javaraman, Patel, Naish, & Schlachta. (n.d.). Force sensing in natural orifice transluminal
- [4] Hass, J. (2003). *An Acoustics Primer*, Chapter 12. Retrieved on February 13, 2011 from: http://www.indiana.edu/~emusic/acoustics/pitch.htm
- [5] http://richardsolo.com/assets/product-photos/IS002/IS002_lrg.jpg
- [6] www.djbonebrakemusic.com/speaker.gif and http://www.cosyclocks.com/4dcoun123y.jpg and http://www.clker.com/cliparts/a/1/9/6/11971031161734659728ted_Stoplight.svg.hi.png