Endoscopic Carpal Tunnel Release Surgical Simulator

Sarah Switalski --Whitney Johnson -- Mason Jellings

Clients

Dr. Robert Radwin, PhD Dr. Ben Mandel, MD

Advisor

Professor Thomas Yen

Background

- Carpal Tunnel Syndrome Release Surgery
 - Relieve pressure on median nerve
- New, cost efficient system for training
- Part of training package

http://www.health.com/health/library/mdp/0,,zm2464,00.html

Current Simulator

Tracking Software

• No force feedback

Client Specifications

- Realistic haptics
- Accurate visual simulation
- No external interference
- Durable

Current Prototype Status

- Tracking device
 - Possible improvements
 - Circuit attachment
 - Circuit aesthetics

Functional hand model

- Possible Improvements:
 - Reduce thickness of ligament
 - Modularize ligament section

Design Alternatives: Blade Cap

- Plastic cap fit around current blade
- Will not interfere with retractable mechanism
- HDPE, Polyurethane
- Varying height and width
 Based on surgeon feedback

Solenoid Activated

- Band embedded around carpal tunnel
 Metal, nylon webbing
- Pull-type solenoid connected via digital I/O
 - Activated state constricts tunnel diameter
 - Voltage output when trigger activated
 - Pulsed to simulate corrugations

Motor Activated

- Band embedded around carpal tunnel
 Metal, nylon webbing
- Stepper motor connected via digital I/O
 - Voltage output when trigger activated
 - Constant resistance, cannot be pulsed

Design Matrix

Criteria	Weight	Blade Cap	Solenoid Activated	Motor Activated
Ease of Integration	30	25	18	18
Ease of Use	25	22	20	17
Durability/Life Span	30	14	17	16
Capabilities	15	10	13	8
Cost	10	9	5	6
Totals:	100	80	73	65

Future Testing

- Administer survey to surgeons
- Use feedback to optimize prototype
 - Size of ligament corrugations
 - Diameter of carpal tunnel
 - Magnitude of force feedback during 'cut'
 - Overall feel and aesthetics

Future Work

- Sync tracking system with virtual environment
- Manufacture cover for circuit board
- Create platform to align testing system

Future Work

- Creation of a complete learning tool
 - Pictures and descriptions of surgical tools
 - Video of real-time surgery
 - Step-by-step instructions explaining procedure
 - Feedback from interactive questions

References

[1] Vasiliadis, H., Xenakis, T., Mitsionis, G., Paschos, N., & Georgeoulis, A. (2010). Endoscopic versus open carpal tunnel release. Arthroscopy, 26(1), 26.

[2] Williams, M. (2010). How does the Wii remote work? Retrieved from http://www.ehow.com/how-does_4895604_wii-remote-work.html.

[3] Lee, J. (2008). Hacking the Nintendo Wii remote. Pervasive Computing, IEEE, 7(3), 39-45.

[4] Zheng, Y., Li, Z., Chen, X., Lu, M., Choi, A., et al. (2006). Ultrasound palpation sensor for tissue thickness and elasticity measurement-assessment of the transverse carpal ligament.Ultrasonics, 44.

[5] Chmarra, M., Bakker, N., Grimbergen, C., & Dankelman, J. (2006). Trendo, a device for tracking minimally invasive surgical instruments in training setups. Sensors and Actuators A-physical, 126(2), 328-334.

[6] www.igstk.org/IGST/img/Tracker-IJCARS-FindSubmission.pdf

[7] "Actuators – Solenoids." Society of Robots, 2010. Retrieved 8 February 2011. http://www.societyofrobots.com/actuators_solenoids.shtml.

[8] Tubular Solenoids General Catalogue. 4 May 2009. http://www.transmotec.com.

Questions?