Transfusion Device

CLIENT: JULIE KESSEL, MD DEPT. OF PEDIATRICS, MERITER HOSPITAL

ADVISOR: PAUL THOMPSON

CLARA CHOW RACHEL O'CONNELL ASHLEY MULCHRONE

Transfusion Device

March 4, 2011

Introduction

- Bilirubin: produced when red blood cells get old
- Red blood cells of babies have shorter lives than those of adults
- Premature babies do not have fully developed organs
- High levels of bilirubin can cause brain damage
- Common treatment: Phototherapy
- Double Volume Exchange Transfusion

Double Volume Exchange Transfusion

- $_{\odot}$ Procedure is done infrequently
- Procedure requires 3 medical personnel
- Twice the baby's total blood volume is exchanged (240 mL total in baby)
- \circ 5-10 mL at a time
- Can take up to 4 hours
- Setup is not intuitive

Design Criteria

- Increase safety of the transfusion
- Device ensures accurate use
 - ★ Eliminate incorrect use of 4-way stopcock
- If not disposable, autoclave compatible
- Handheld
- Budget: less than \$500

Proposed Components

\circ Stopcock base

- Ports easily identifiable
- Increase comfort for user

• Counting system

- $_{\circ}~$ Help track the amount of blood with drawn
- \circ Air embolus detector
- \circ Blood clot filter

Transfusion Device

Design Matrix - Base

Criteria	Weight	Round- bottom	Flat- bottom	Vertical handle	Loop handle
Comfort	30	25	20	17	16
Stability	25	14	21	9	12
Versatility	20	16	15	5	18
Weight	10	2	4	9	6
Occupied space	10	7	8	5	3
Ease of fabrication	5	4	4	5	1
Total	100	68	72	50	56

Design Matrix - Counter system

Criteria	Weight	Mechanical Counter	Waste bag scale	Waste container	Injection Counter	Flow Meter
Accuracy	25	22	20	18	12	23
Sterilization	25	8	23	23	8	15
Size	20	10	15	16	13	18
Feasibility	10	6	9	8	5	3
Shelf Life	10	6	8	9	4	5
Ease of Fabrication	5	1	5	4	1	3
Cost	5	2	4	4	2	1
Total	100	55	84	82	45	68

March 4, 2011

Future Work

- $_{\odot}$ SolidWorks design of the stopcock base
- Fabricate the base out of an autoclavable material
- Further research waste bag scale and waste container designs to make final decision on counter
- $_{\odot}$ Construct final counter design
- $_{\odot}$ Obtain the air bubble detector
- $_{\odot}$ Build an alarm system for the air embolus detection sensor
- $_{\odot}$ Test the counter and sensor alarm system
- Simulate procedure at Meriter's Simulation Center

References

- <u>http://www.halkeyroberts.com/products/medical/needlefree-</u> <u>swabable-valves/needlefree-4-way-lever-stopcock.aspx</u>
- <u>http://www.medicalpointindia.com/child-photot herapy.htm</u>
- <u>http://www.medicalgeek.com/pediatrics/7679-neonatal-pathological-jaundice-management.html</u>
- o <u>http://www.indiamart.com/sartorius-stedimindia/services.html</u>
- <u>http://www.sportline.com/img/prod/27.jpg</u>
- <u>http://www.hand-tools.us/images/pictures/pelouze-20lb.-capacity-industrialgrade-radial-dial-hanging-scale--model-7842.jpg</u>
- <u>http://www.pbms.co.za/images/products_large/</u> <u>chemical_light_weight_graduated_ribbed.jpg</u>
- <u>http://www.engineeringtoolbox.com/flow-meters-d_493.html</u>
- <u>http://www.janewhitney.com/img/graduated_cylinders.jpg</u>
- <u>http://www.utahmed.com/neobloodfiltration.htm</u>
- o <u>http://www.introtek.com/html/products.aspx?prod_id=1</u>

Transfusion Device