Stapler for Uretero-Intestinal Anastomosis with Absorbable Staples

Matthew Bollom, Vanessa Grosskopf, Samantha Paulsen, Jeff Theisen

Overview

Background and Motivation
Design Specifications
Previous Work
Semester Goals

Staple Fabrication
Stapler Design

Future Work

Bladder Cancer

- Client: Dr. Tracy Downs, Professor of Urology, University of Wisconsin Clinics
- 5th most common cancer in United
 States ¹
- Most expensive over time
- Treatment when cancer invades muscle: radical cystectomy ²
 - Urostomy bag
 - Neobladder

Motivation & Problem Statement

- Ureters attached to new bladder via absorbable sutures
- Lengthy procedure
- Inconsistency between surgeons
- Metal staples cause stones
- Minimize subsequent interventions

Design Specifications - Staples

Biocompatible

- Secures ureter to neobladder for a minimum of 30 days
- Able to create water-tight seal
- Withstands bladder environment
- Does not damage surrounding tissue
- Sterile

Design Specifications - Stapler

- Must be faster and more consistent compared to sutures
- Sterile
- Firing mechanism must be simple to operate
- Must form water-tight seal of ureter to neobladder

Previous Work - Staples

85:15 poly(lactide-co-glycolide)
 Biocompatible and absorbable
 Barbs for gripping tissue

Previous Work - Fabrication

Problem: bubbles in material plate and staples

Previous Work - Testing

Problem: bubbles in test specimens, non-physiologically relevant tissue model

Previous Work - Stapler

Problem: not compatible with our staple design

Semester Goals

- Improve staple fabrication remove bubbles
- Develop stapler prototype
- Integrate staples with stapler
- Functional testing of staples and stapler with physiologically relevant model

Staple Fabrication

PLGA film deposition via chloroform evaporation

- Film is too flimsy
- Cannot be compression molded
- Possible degradation or increased porosity

Staple Fabrication

Possible approaches

- Compression molding in a vacuum
- Injection molding
- New aluminum mold
 - Shallow enough so we can squeeze out bubbles
- Plastic mold (PMMA)
- PMMA staples for functional testing and validation of staple design

Stapler Approach

Stapler Approach

Stapler Video

Future Work

- Attempt other suggested methods to get rid of bubbles in material
- Fabricate rapid prototype of stapler
- Integrate staples with stapler
- Functional testing

Acknowledgments

Dr. Tracy Downs
Professor Tompkins
Professor Puccinelli
Professor Murphy
Polymers Lab

References

 Bladder Cancer. *National Cancer Institute*. Retrieved October 17, 2011, from http://www.cancer.gov/cancertopics/types/bladder
 Bladder Cancer. *U.S. National Library of Medicine*. Retrieved October 17, 2011, from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001517/

Questions?

