Dynamic Beam Attenuator

Team:

Mike Scherer (Leader) Katherine Lake (Communicator) Clara Chow (BSAC) Ashley Mulchrone (BWIG)

Clients:

Dr. Chuck Mistretta Tim Szczykutowicz

Advisor: Dr. Paul Thompson

Background

- Clients: Dr. Mistretta and Tim Szczykutowicz
- X-Ray Computed Tomography^{1,2} (CT)
 - X-Rays to image multiple planes in body
- Uses:
 - Diagnostic Imaging^{3,4}
 - CT-Guided Procedures⁵

C-arm CT⁶

Problem Definition

- Current CT scans lack dynamic dose modulation^{7,8}
 - High x-ray doses
 - Low quality images
- Competing devices:
 - Bowtie filters
 - kVp modulation
 - No dynamic filters

Design Criteria

- Client Proposal: Attenuate X-Ray dosages⁷
 - Wedge thickness
 - Changes over time
 - Improve signal to noise uniformity
- Budget: ~\$5000
- Goal:
 - Proof of concept
 - Design new wedges with actuation

Current Prototype

- 10 steel wedges
- Fixed wedge plate on the top
- Very heavy
- Cannot optimally attenuate
- One wedge attached to one motor

Current prototype with 10 steel wedges⁷

Material thickness & Beam Hardening

- Matlab simulations to model the wedge thickness required to attenuate 36 cm of soft tissue and 1 cm of bone
- Beam hardening: Energy change of x-rays as it passes through the material

Materials Design Matrix

Criteria	Weight	Lead	Tungsten	Copper	Iron	Aluminum
Leaf Thickness	4	4.91	10	1.06	0.74	0.09
Beam Hardening	2.5	7.96	10	7.36	7.4	8.23
Machinability	2	6	2	6	8	10
Cost	1	2.33	0.10	1.36	4.27	10
Weight/Heaviness	0.5	8.33	10	2.27	1.80	0.66
Total (out of 100)		58.0	74.1	37.1	42.6	51.3

Note: Values quantitatively determined and normalized to a scale from 1 to 10. Each criteria was weighted so that the grand total was from 1 to 100.

Wedge Actuation

Wedge with linear actuator

Wedge with rack and pinion

Preliminary Design

- Tungsten wedges with rack and pinion actuation in flush configuration
- Motors placed on same side with alternating positions
- Actuation and configuration may not be the final design

Proposed design based on size restraints (Wedge thickness not drawn to scale)

Future Work

- Machine wedges and housing
- Select, purchase, and implement actuation mechanism
- Assemble entire device
- Program the device
- Test with phantoms

Acknowledgements

- Clients: Chuck Mistretta and Tim Szczykutowicz
- Advisor: Dr. Paul Thompson
- Siemens engineer: Kevin Royalty
- Erick Oberstar

References

- [1] Herman, G.T., Fundamentals of computerized tomography: Image reconstruction from projection, 2nd edition, Springer, 2009
- [2] Goldman, L., Principles of CT and CT Technology. J. Nucl. Med. Technol, vol. 35, no. 3, pp. 115-128, 2007.
- [3] Takahashi, M. et al., *Mycobacterium kansasii pulmonary infection: CT findings in 20 cases*. Jpn J Radiol, 2012.
- [4] Greco, A. et al., Reproducibility and accuracy of non-invasive measurement of infarct size in mice with high-resolution PET/CT. J Nucl Cardiol, 2012.
- [5] Nakatani, M. et al., Analysis of factors influencing accuracy and complications in CT-guided lung biopsy. Minim Invasive Ther Allied Technol, 2012.
- [6] http://www.healthcare.philips.com/pwc_hc/main/shared/Assets/Imates/CT/Visualization_software/oa_ct_viewer_16_en_lrg.jpg
- [7] Szczykutowicz, T., Intensity Modulated Computed Tomography. Dissertation in progress.
- [8] C. H. McCollough, M. R. Bruesewitz and J. J. Kofler, CT Dose Reduction and Dose Management Tools: Overview of Available Options. RadioGraphics, vol. 32, no. 1, pp. 503-512, 2006.