Dynamic Beam Attenuator

Michael Scherer, Katherine Lake, Clara Chow, Ashley Mulchrone Client: Dr. Charles Mistretta \& Timothy Szczykutowicz
\section*{Advisor: Dr. Paul Thompson}

BME

ABSTRACT

In the US alone, 70 million Computed Tomography (CT) scans are performed each year, but it is estimated that 1 in 50 scans may lead to cancer ${ }^{1}$. In order to improve CT safety, our client, Dr. Charles Mistretta, is researching the use of dynamically attenuated X-Ray beams during scans. Dynamic beam attenuation (DBA) has been shown to increase signa to noise ratio uniformity and decrease X-Ray scatter, which improves image quality ${ }^{2}$ and reduces unnecessary dosage passing through the patient ${ }^{3}$. We designed and actuated set of parallel wedges that selectively attenuate X-Ray beams when placed in the X-Ray path. The device was found to be precise to 180 microns and $0.12 \pm 0.079 \%$ difference in attenuation reproducibility when tested with a CT scanner

INTRODUCTION

Client: Dr. Charles Mistretta, UW-Madison

- Departments: Medical Physics, Radiology, and Biomedical Engineering
- Research: Magnetic Resonance Imaging and X-Ray CT
- Project proposal: Mechanize a device used to test DBA

Figure 1: Wedge-Based Beam Attenuation
(A): The wedges are placed in the X-Ray field
(A): The wedges are placed in the X-Ray field. Maximally overlapping wedges edges and reach the patient.
(B): As one wedge moves out of the X-Ray field, the material thickness is
reduced and more X-Rays pass through the wedges
reduced and more X-Rays pass through the wedges

Figure 2: Original DBA Prototype The prototype consists of ten hand-
movable steel wedges (A) and a stee olid wedge (B). The prototype is mounted to a sheet of Plexiglas (C)

Figure 3: C-Arm CT Scanner Figure 3: C-Arm CT Scanner
This scanner emits a fan-shaped array of X-Ray beams (A) from the source (B) and collects the X Rays at the detector (C). It has a
range of motion of 220 degrees.

DESIGN CRITERIA

- Each wedge must
- Move independently of other wedges

Attain pre-programmed positions dependent on desired metal thickness or attenuation value

- Move at a maximum of 1 mm increments
- Have a stroke length greater than 4 cm
- Be flush with base plate and neighboring wedges
- Generate a post-scan report of individual wedge positions
Material Optimization

Figure 4: Material Attenuations Linear attenuation coefficients as a function of energy for various materials using NIST
material data ${ }^{4}$.
- 1 Prop
Table 1: Properties of wedge materials considere Leaf thickness refers to the amount of material required to attenuate 36 cm of soft tissue

Material	Leaf Thickness (cm)	Cost per in ${ }^{\mathbf{3}}$	Mass (\mathbf{g})
Tungsten	0.1205	$\$ 51.39$	46.97
Lead	0.2456	$\$ 2.27$	56.4
Copper	1.1401	$\$ 3.91$	206.86
Iron	1.6342	$\$ 1.24$	260.57
Aluminum	12.9709	$\$ 0.53$	709.18

- Current CT scanners have a finite mAs increase, which eliminates tungsten and lead as metal choices
- After analysis, the original prototype with steel wedges was determined to be sufficient for proof of concept

Final Design

Figure 6: Final Device
(A): $30.5 \times 61 \mathrm{~cm}$ acrylic base
(B): Firgelli L12-I and L12-P 12 V Linear Servomotors with 100 mm stroke length and 50:1 gear ratio
(C): Motor to wedge coupler
(D): Ten $15 \times 17.5 \times 220 \mathrm{~mm}$ steel wedges
(E): Fixed $175 \times 220 \mathrm{~mm}$ steel wedge
(F): Eight linear actuator controller boards
(G): PhidgetAdvancedServo 8-motor controller

TESTING

Figure 7: Wedge Positioning Linear relationship between motor input and wedge position.

Repeatability using CT

Scanned Images

- Wedges were imaged moved, returned to the starting position, and re-imaged
Repeated four times
Images were subtracted to test for reproducibility
Subtracted images showed $0.12 \pm 0.079 \%$ difference in attenuation from test to test Satisfies our clients requirements

Repeatability using Calipers Inputted randomly generated pulses from driver program to motor controller
Wedge position was measured with calipers
Determined that a wedge can be reliably positioned within 180 microns

Figure 8: CT Images of Wedges
(A): Image of seven wedges
(B): Subtraction of two imat

FUTURE WORK

- Test device with phantoms using CT
- Quantify dose reduction, signal to noise improvement, and scatter reduction with DBA
- Present findings to Siemens
- Reduce device size
- Patent design
- Integrate into a future generation of CT scanners

ACKNOWLEDGEMENTS

- Dr. Paul Thompson	- Dr. Thomas Yen
- Dr. Charles Mistretta	- Kevin Royalty
- Tim Szczykutowicz	- Siemens USA

REFERENCES

[1] Brenner, D.J. (2010). Slowing the Increase in the Population Dose Resulting from CT Scans. Radiation Research: December 2010, Vol. 174, No. 6b, pp. 809-815.
2] Brenner, D. J., \& Hall, E. J. (2007, November). Computed Tomography - An Increasing Source of Radiation Exposure. The New England Journal of Medicine, 357:2277-2284
[3] Szcykutowicz, T. and Mistretta C. A. (2011). Practical considerations for intensity modulated CT. Proceedings of SPIE Medical Imaging, vol. 8313, no. 161 . [4] Hubbel, J.H., \& Seltzer, S.M. (1996). Tables of X-Ray Mass Attenuation Coefficients

