

Embouchure Assistive Device

Advisor: John Webster

Client: Elon Roti Roti

Team Members:

Vivian Chen

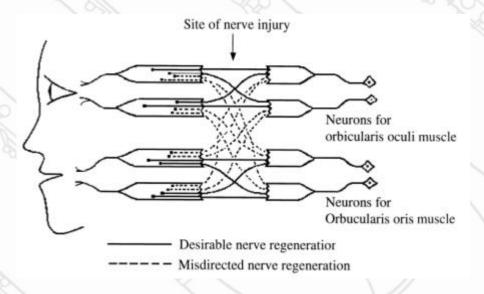
Megan Jones

Patrick Cassidy

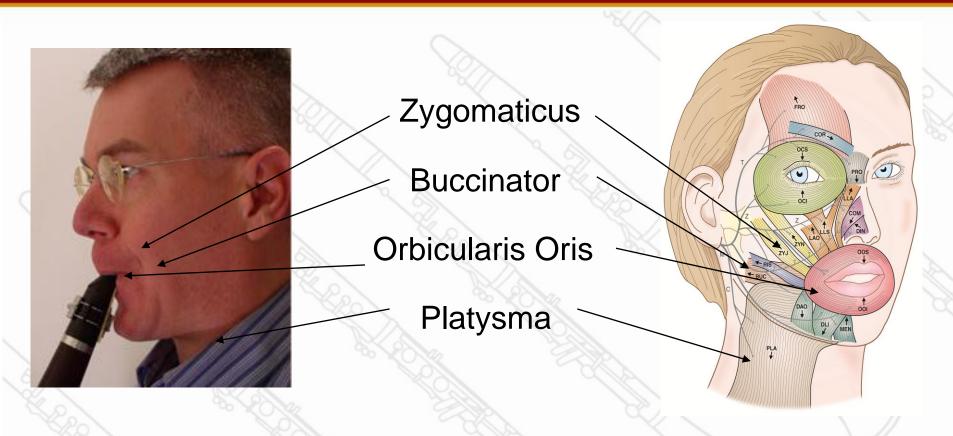
Outline

- Background
 - Bell's palsy
 - Synkinesis
 - Clarinet embouchure
- Motivation
- Problem statement
- Design
 - Requirements
 - Alternatives
- Matrix
- Final design
- Future work
- Testing

Bell's Palsy


- Bell's palsy: paralysis of facial muscles triggered by dysfunction of cranial nerve VII
 - Cause: nerve inhibition due to inflammatory condition
 - Prognosis is good even without treatment

Synkinesis



- Synkinesis: abnormal muscle movement during normal movement
 - Cause: misdirection of neurons upon regeneration
 - Most often affects muscles around mouth

Clarinet Embouchure

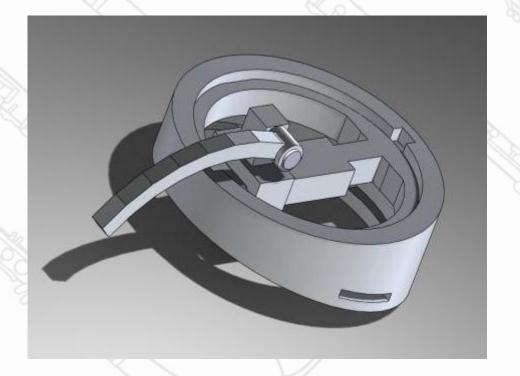
- Embouchure: shape of mouth when playing instrument
- Due to synkinesis, muscles contract simultaneously

Project Motivation

- Synkinesis prevents engagement of correct muscles when playing clarinet
- Assistive device needed to help maintain pressure on mouthpiece by exerting forward and inward forces on cheek
- Device should also reduce air leakage at corner of mouth

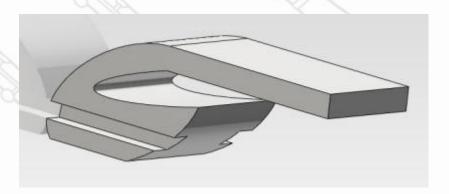
Design Specifications

- Extend quality play time to at least 30 minutes
- Must not restrict playing
- Low cost
- Lightweight
- Easy to use/clean
- Must maintain constant pressure on cheek
- Preferably a "head gear"



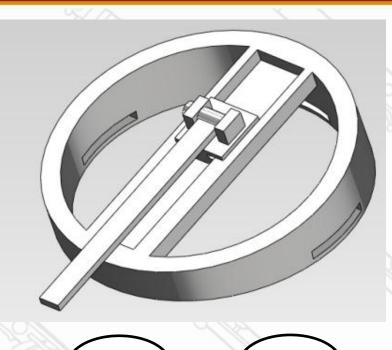
Prototype: Last Semester

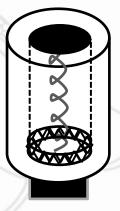
- Disadvantages:
 - Bulky
 - Ear contact
 - Multiple adjustments
 - Pressure application
 - Aesthetics

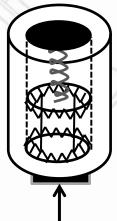


Design 1: Spring Metal

- Pressure application:
 - Preset spring steel for inward force
 - Track for forward force
- Materials:
 - Spring steel (force arm)
 - Plastic/Metal (ring)
- Pros:
 - Less bulky
 - Adjustable with one hand
- Cons:
 - Cost
 - Manufacturing

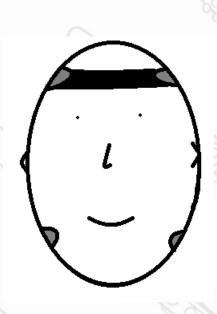


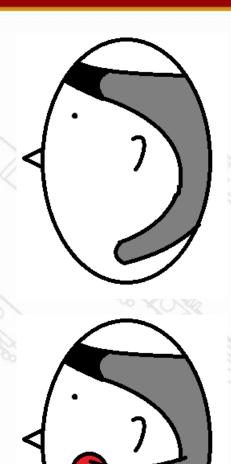


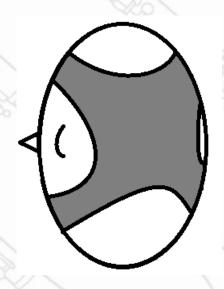

Design 2: Button Adjustment

- Pressure application:
 - Coil spring in axle allows for sustained inward force
 - Track for forward force
- Materials:
 - Spring metal (force arm)
 - Plastic/Metal (ring)
- Pros:
 - Less bulky
 - Position of force arm maintained
- Cons:
 - Adjustability
 - Manufacturing

Design 3: Butterfly Tiara




- Pressure application:
 - Preset spring metal for inward force
 - Manual forward force
- Materials:
 - Thin steel
 - Friction interface
- Pros:
 - Adjustability
 - Ease of use
 - Aesthetics
- Cons:
 - Forward force

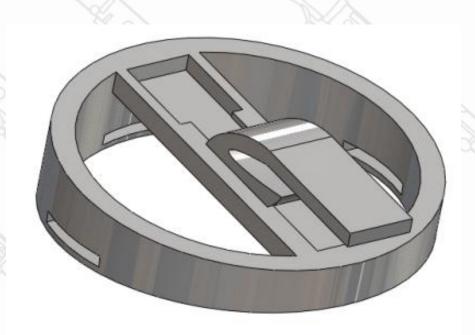


Design 3: Butterfly Tiara

Design Matrix

Weight	Category	Spring	Button	Butterfly Tiara
10	Fabrication	5	2	8
10	Cost	4	4	6
20	Ease of Use	15	15	15
20	Client Preference	15	14	18
40	Directionality/Pressure/Force	32	32	28
100		71	67	75

Final Design Choice



Butterfly Tiara

or

Spring Metal

Future Work

- Address aesthetics concerns
 - Contour headpiece to client's head
- Materials
 - Contact prosthetics specialists
 - Maximize ease-of-use and longevity
- Fabricate 'Butterfly Tiara' and 'Spring Metal' prototypes
- Test and revise designs

Future Work: Testing

- Repeatability
- Determine:
 - Force required to close mouth
 - Force applied by device
- Surface EMG both sides [3]
- User testing:
 - Effectiveness
 - Tone improvement
 - Lengthen time able to practice/play
 - Comfort
 - Ease of use/setup

Acknowledgements

- Advisor: John Webster (Dept. of BME)
- Client: Elon Roti Roti (Dept. of Obstetrics/Gynecology)
- Professor Fronczak (Dept. of ME)
- Brian Anderson (Creative Director, Hussmann)

References

- 1. Moran, C. J., & Neely, J. G. (1996). Patterns of Facial Nerve Synkinesis. *The Laryngoscope*, *106*(12), 1491-1496.
- Nakamura, K., Toda, N., Sakamaki, K., Kashima, K., & Takeda, N. (2003). Biofeedback Rehabilitation for Prevention of Synkinesis after Facial Palsy. Otolaryngology -- Head and Neck Surgery, 128(4), 539-543.
- 3. Van Swearingen, J. M., & Brach, J. S. (2003). Changes in facial movement and synkinesis with facial neuromuscular reeducation. *Plastic and reconstructive surgery*, 111(7), 2370.
- 4. http://en.wikipedia.org/wiki/Bell's_palsy
- 5. http://www.clarinet-now.com/poor-clarinet-embouchure.html

Questions

