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OVERVIEW

« Background — Microfluidic Devices
« Client requirements and desired specifications
» Critical analysis of two design elements
- PDMS diffusion platform
« Oxygen detection technique
* Current design

*  Moving forward




PROBLEM STATEMENT

Need way to assess cardiac cellular response to hypoxia

Traditional hypoxia chambers non-ideal

Slow, Large & space-filling, $$$

« TASK: Develop and validate a next-generation,
microfluidic-based hypoxia chamber to facilitate studies
involving oxidative stress, ischemia, and reactive oxygen
species (ROS)-mediated cellular pathways.




MICROFLUIDIC DEVICES

*  Flexible polymer matrix (PDMS)

« Fabrication Process
*  Molded over master template
« Channels cross-linked to glass

« Cells seeded in fluid filled
channels

*  Applications of microfluidics
*  Printer industry

« Study of microbial behavior

- Study of cellular behavior** ) .
Figure 1. PDMS platform connected to fluid lines

(Image taken from www.dolomite.com)




DESIGN SPECIFICATIONS

« Oxygen gradient range: 21% - 1%

« Cannot interfere with cell culture

« Master mold reusable

 PDMS device one-time use

« Biocompatible, non-cytoxic materials only

« Operate at 37°C in a 5% CO2 incubator

«  Channels: 250um - 500um tall x 250um — 750um wide




PLATFORM CHANNEL LAYOUT

* Design 1 — Parallel Flow

 (as flow at a constant rate Varying Flow Release

Gas Flow

* Flow release based on pulsating
solenoid manifold

« Diffusion of O, and N, into micro-
wells

* Costly

Solenoid
Manifold

Gas Flow

Figure 2. Top view schematic of parallel flow design.




PLATFORM CHANNEL LAYOUT

Design 2 — “Two-Channel”
O, and N, flow into gas channels
O, gradient forms across channels

Relatively inexpensive and simple

Figure 3: Two channel design concept (Based on
Li, et. Al 2011).




PLATFORM CHANNEL LAYOUT

Design 3 — “Oxygenator” a Inlet

Channels

Requires precise microfluidic construction

O2 Concentration

Concentrations halved at each node SO Gradient
* Generator

Can develop full spectrum gradient (0-100%)

Cell platform situated above R,

Figure 4: O, gradient C,,4-C,
0% - 14.2% - 28.49% - 42.82% - 57.18% - 71.53% - 85.81% - 100%
(Lam, et. Al 2009)




CHANNEL DESIGN MATRIX

Platform Design

Factors Weight Rating (1-10)
Parallel Flow [Two Channel |Oxygenator

Ease of production 0.25 4 ) 2
Span of gradient range 0.20 4 7 )
Cell-culture isolation 0.15 8 5 6
Gradient Control 0.25 8 4.5 2
Cost 0.15 1 6 7
TOTAL 1 5.15 6.425 4.75




GAS DETECTION METHODS

* Thin sensor Film

« Layer of Chemo-fluorescent
indicator molecule

 Embedded in porous matrix
* Quenched by O,

« Concentration based on
fluorescent intensity

« Sensor matrix replaced after each Figure 5: Representation of the thin sensor
experiment film design (Grist, et. Al 2010).




GAS DETECTION METHODS

* Fluorescent microparticles

Micro/nanoparticles

» Suspended in cell culture
media

¢« Coated in PDMS

* Fluorescent intensity-based

Aqueous Solution

Figure 6: Representation of PDMS coated
microparticles in solution (Grist, et. Al 2010).




GAS DETECTION METHODS

* O, microelectrode sensor

 (ives discrete
measurement for one
location

%0 mm

21 mm

* O, reduction produces
voltage

18 mm

Electrical
connection

, Figure 7. Dissolved oxygen microelectrode (Left) and
* Affects concentration dissolved oxygen sensing tips (Right) (Lim, et. Al 2009).
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GAS DETECTION DESIGN MATRIX

Method of Monitoring Oxygen

Factors Weight Rating (1-10)

Thin Sensor Film Fluorescent Particles O, Probe
Accuracy 0.30 7 8 2
Cost 0.15 4 5 3
Ease of Use 0.25 7 4 7
Biocompatibility 0.30 8 6 8
TOTAL 1.00 6.85 5.95 5.2




PRELIMINARY DESIGN

Figure 8: SolidWorks rendition of the 2 channel design (Based on Li, et. Al 2011).

BME Design

Substrate ™~

03/07/12

Figure 10: Representation of the thin
Figure 9: Two channel design photo mask sensor film design (Grist, et. Al 2010).
(Based on Li, et. Al 2011).




FUTURE WORK

- Chemical safety training
« Construct 2-channel device
« Calibrate florescence detector

- Integrate all desigh components
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