# MICROFLUIDIC GAS DIFFUSION PLATFORM

Bradley Wendorff – Team Leader Drew Birrenkott – Communicator Caleb Durante – BWIG Jared Ness – BSAC

Professor Brenda Ogle, Ph.D. – Client Professor Tracy Puccinelli, Ph.D. - Advisor

### **OVERVIEW**

- Background Microfluidic Devices
- Client requirements and desired specifications
- Critical analysis of <u>two</u> design elements
  - PDMS diffusion platform
  - Oxygen detection technique
- Current design
- Moving forward

### **PROBLEM STATEMENT**

- Need way to assess cardiac cellular response to hypoxia
- Traditional hypoxia chambers non-ideal
  - Slow, Large & space-filling, \$\$\$
- TASK: Develop and validate a next-generation, microfluidic-based hypoxia chamber to facilitate studies involving oxidative stress, ischemia, and reactive oxygen species (ROS)-mediated cellular pathways.

### **MICROFLUIDIC DEVICES**

- Flexible polymer matrix (PDMS)
- Fabrication Process
  - Molded over master template
  - Channels cross-linked to glass
  - Cells seeded in fluid filled channels
- Applications of microfluidics
  - Printer industry
  - Study of microbial behavior
  - Study of cellular behavior\*\*



Figure 1: PDMS platform connected to fluid lines (Image taken from www.dolomite.com)

### **DESIGN SPECIFICATIONS**

- Oxygen gradient range: 21% 1%
- Cannot interfere with cell culture
- Master mold reusable
- PDMS device one-time use
- Biocompatible, non-cytoxic materials only
- Operate at 37°C in a 5% CO2 incubator
- Channels: 250µm 500µm tall x 250µm 750µm wide

### **PLATFORM CHANNEL LAYOUT**

- Design 1 Parallel Flow
  - Gas flow at a constant rate
  - Flow release based on pulsating solenoid manifold
  - Diffusion of O<sub>2</sub> and N<sub>2</sub> into microwells
  - Costly



Figure 2: Top view schematic of parallel flow design.

#### PLATFORM CHANNEL LAYOUT

- Design 2 "Two-Channel"
  - O<sub>2</sub> and N<sub>2</sub> flow into gas channels
  - O<sub>2</sub> gradient forms across channels
  - Relatively inexpensive and simple



Figure 3: Two channel design concept (Based on Li, et. Al 2011).

### **PLATFORM CHANNEL LAYOUT**

- Design 3 "Oxygenator"
  - Requires precise microfluidic construction
  - Concentrations halved at each node
  - Can develop full spectrum gradient (0-100%)
  - Cell platform situated above R<sub>out</sub>



Figure 4:  $O_2$  gradient  $C_{out1}$ - $C_{out8}$ 0% - 14.2% - 28.49% - 42.82% - 57.18% - 71.53% - 85.81% - 100% (Lam, et. Al 2009)

#### CHANNEL DESIGN MATRIX

| Platform Design        |        |               |             |            |  |  |  |
|------------------------|--------|---------------|-------------|------------|--|--|--|
| Factors                | Weight | Rating (1-10) |             |            |  |  |  |
|                        |        | Parallel Flow | Two Channel | Oxygenator |  |  |  |
| Ease of production     | 0.25   | 4             | . 9         | 2          |  |  |  |
| Span of gradient range | 0.20   | 4             | - 7         | 9          |  |  |  |
| Cell-culture isolation | 0.15   | 8             | 5           | 6          |  |  |  |
| Gradient Control       | 0.25   | 8             | 4.5         | 5 2        |  |  |  |
| Cost                   | 0.15   | 1             | 6           | 7          |  |  |  |
| TOTAL                  | 1      | 5.15          | 6.425       | 4.75       |  |  |  |

# **GAS DETECTION METHODS**

- Thin sensor Film
  - Layer of Chemo-fluorescent indicator molecule
  - Embedded in porous matrix
  - Quenched by O<sub>2</sub>
  - Concentration based on fluorescent intensity
- Sensor matrix replaced after each experiment



Figure 5: Representation of the thin sensor film design (Grist, et. Al 2010).

# **GAS DETECTION METHODS**

- Fluorescent microparticles
  - Suspended in cell culture media
  - Coated in PDMS
  - Fluorescent intensity-based



Figure 6: Representation of PDMS coated microparticles in solution (Grist, et. Al 2010).

# **GAS DETECTION METHODS**

- O<sub>2</sub> microelectrode sensor
  - Gives discrete measurement for one location
  - O<sub>2</sub> reduction produces voltage
  - O<sub>2</sub> is consumed
    - Affects concentration



Figure 7: Dissolved oxygen microelectrode (Left) and dissolved oxygen sensing tips (Right) (Lim, et. Al 2009).

### GAS DETECTION DESIGN MATRIX

| Method of Monitoring Oxygen |        |                  |                       |          |  |  |
|-----------------------------|--------|------------------|-----------------------|----------|--|--|
| Factors                     | Weight | Rating (1-10)    |                       |          |  |  |
|                             |        | Thin Sensor Film | Fluorescent Particles | O₂ Probe |  |  |
| Accuracy                    | 0.30   | 7                |                       | 8 2      |  |  |
| Cost                        | 0.15   | 4                |                       | 5 3      |  |  |
| Ease of Use                 | 0.25   | 7                |                       | 4 7      |  |  |
| Biocompatibility            | 0.30   | 8                |                       | 6 8      |  |  |
| TOTAL                       | 1.00   | 6.85             | 5.9                   | 5 5.2    |  |  |

### PRELIMINARY DESIGN

Figure 8: SolidWorks rendition of the 2 channel design (Based on Li, et. Al 2011).



Figure 9: Two channel design photo mask (Based on Li, et. Al 2011).



Figure 10: Representation of the thin sensor film design (Grist, et. Al 2010).

### **FUTURE WORK**

- Chemical safety training
- Construct 2-channel device
- Calibrate florescence detector
- Integrate all design components

### ACKNOWLEDGEMENTS

- Professor Brenda Ogle
- Professor Tracy Puccinelli
- Professor John Puccinelli
- Brian Freeman

#### REFERENCES

Beebe D, M. G., Walker G. "Physics and Application of Microfluidics in Biology." <u>Annual Review of Biomedical Engineering</u> **4**: 261-286.

Birgit Ungerböck, G. M., Verena Charwat, Peter Ertl, Torsten Mayr (2010). "Oxygen imaging in microfluidic devices with optical sensors applying color cameras." <u>Procedia Engineeering</u> **5**: 456-459.

Eddington, e. a. (2009). "Modulating Temporal and Spatial Oxygenation over Adherent Cellular Cultures." PLoS ONE 4(9).

Grist, S. C., L. Cheung K. (2010). "Optical Oxygen Sensors for Applications in Microfluidic Cell Culture." <u>Sensors</u> **10**: 9286-9316.

Lam R, K. M., Thorsen T. (2009). "Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator." <u>Anal. Chem.</u> **81**: 5918-5924.

Li N., Luo C.X., Zhu X.J., Chen Y., Qi O.Y., Zhou L.P. (2011). "Microfluidic generation and dynamically switching of oxygen gradients applied to the observation of cell aerotactic behaviour." Microelectric Engineering 88(8): 1698-1701.

Lo J., S. E., Eddington D., (2010). "Oxygen Grandients for Open Well Cellular Cultures via Microfluidic Substrates." <u>NIH Public</u> <u>Access</u>: 15.

Sin, A. C., K. Jamil, M. Kostov, Y. Rao, G. Shuler, M. (2004). "The Design and Fabrication of Three-Chamber Microscale Cell Culture Analog Devices with Integrated Dissolved Oxygen Sensors." <u>Biotechnol. Prog.</u> **20**(1): 338-345.

Ungerbock, B. M., G. Charwat, V. Ertl, P. Mayr, T. (2010). "Oxygen imaging in microfluidic devices with optical sensors applying color cameras." <u>Elsevier</u> **5**: 456-459.