BME 400 - Silicone Oil Applicator

Team : Ryan Nessman-*BWIG* Claire Wardrop-*BSAC & Leader* Tian Zhou-*Communicator* Clients: Dr. Richard Galgon Dr. George Arndt

Advisor: Professor John Webster

Overview

- Background
- Problem Statement
- Existing Devices
- Design Specifications

- Enclosed Box Design
- Prototypes 1-4
- Materials
- Future Work

Background

- Silicone oil aerosol spray is widely used as a lubricant in medical industry.
- Used by anesthesiologists
- Lubricant applied to inside and outside of tubes during operations

Figure 1 – RUSCH silicone oil lubricant aerosol spray ("Rusch Silkospray", 2011)

Some Devices Needing Lubrication

- Fiber optic bronchoscopes
- Single and double lumen endotracheal tubes
- Airway exchange catheters
- Aintree intubation catheters
- Laryngeal mask airways
- Bronchial blockers

Figure 2 – Bronchoscope

Problem Statement

- Current method of application causes:
 - Slippery work environment
 - Risk for cryogenic burns
 - Release of particles into air that can be inhaled
- A different effective method of applying the silicone oil lubricant is sought.

Existing Devices

Figure 3 – Brush applicator for silicone oil lubricant (Tool Shack, 2011)

- Do not work with lubricant UW hospital uses
- Expensive

Figure 4 – Syringe Lubricant Applicator (High Island Health, 2011)

Figure 5 – Automatic silicone oil spray chamber (McClellan Automation System, 2011)

Motivation & Client Requirements

- Eliminate/reduce potential hazards in the OR
- Compatible with the current spray
- Coat inside and outside of a tube/scope
- Portable

Enclosed Box Design

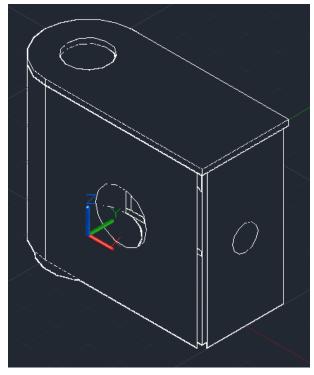


Figure 5. The Enclosed Box Design

- Features:
 - Works with current spray
 - Minimizes overspray
 - Can lubricate inside and outside
 - Disposable
 - Gaskets and pull tab to contain the spray

First Prototype

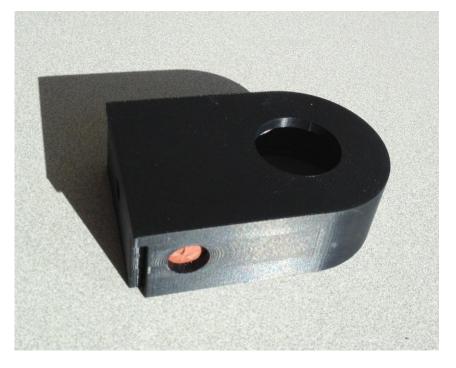


Figure 6. The First Prototype

- Features:
 - Three holes to allow for even coating of tubes
- Problems:
 - Does not fit onto the can
 - Overall too large
 - Nozzle opening through the top

Second Prototype

Figure 7. The second prototype

• Features:

- Step design allows for increased access to the nozzle
- Eliminates back-spray
- Testing is promising
 - Reduces overspray from 5900 cm² to 0 cm²
 - Effectively coats inside and outside
- Problems:
 - Gasket material too stiff
 - Sharp corners and edges
 - Cannot fully access the nozzle
 - Difficult to manufacture

Third Prototype

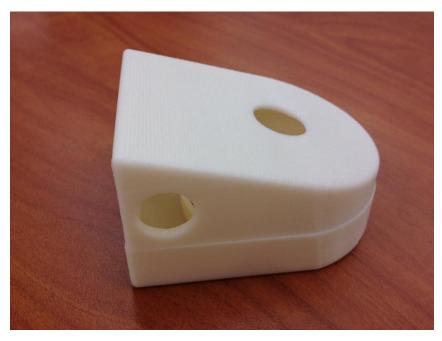
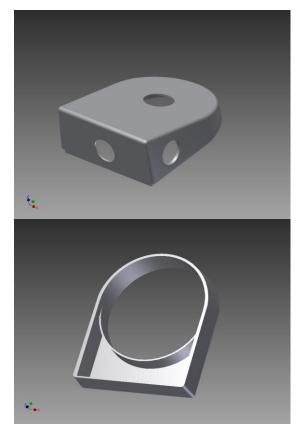



Figure 8. The third prototype

- Features:
 - Two pieces able to injection mold
 - Slanted top instead of step
 - Rounded corners
 - Tapered
 - Nozzle is accessible
- Problems:
 - Does not promote effective air flow
 - Does not fit onto the can

Fourth Prototype

- Features:
 - Bottom fits on can
 - Holes moved back
 - Lip for stronger attachment
- Problems:
 To be determined

Figure 9. The fourth prototype

Materials - Body

Criteria		Possible Materials							
	Weight	PC	PMMA	HDPE	LDPE	PET	ABS	PP	
Cost	5	2	1	5	3	5	4	5	
FDA Approved	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Transparency	1	1	1	0.5	0.5	0.5	0.5	0.5	
Young's Modulus	1.5	1	1.5	1.5	0.25	0.25	0.5	1.25	
Total	10	6.5	6	9.5	6.25	8.25	7.5	9.25	

Table 1. Design matrix for the body material

Materials - Gasket

Criteria	Possible Materials					
	Weight	PTFE	Neoprene	Silicone Rubber	Nitrile Rubber	
Cost	5	4	1	5	3	
FDA Approved	2.5	2.5	1	2.5	2	
Young's Modulus	2.5	.5	1.5	2.25	2	
Total	10	7	3.5	9.75	7	

Table 2. Design matrix for the gasket material

Future Work

- Print and test fourth prototype
- Contact manufacturers
- Burrill Competition

Acknowledgements

- Dr. Richard Galgon
- Dr. George Arndt
- Amit Nimunkar
- Professor Webster
- Kimberli Carlson
- Professor Osswald
- Professor Turng
- Professor Pfefferkorn

References

- 3M. (2010). "Material Safety Data Sheet for Silicone Lubricant."
 - http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn_zu8looxl8_BPxm1Ov70k17zHvu9lxtD7SS
- Betco. (2007). "Material Safety Data Sheet for Silicone Spray Lubricant."
- <http://www.betco.com/MSDS/045.pdf>
- Camp, D., Ateaque, A., Dickson, W. A. (2003). "Cryogenic burns from aerosol sprays: a report of two cases and review of the literature." *British Association of Plastic Surgeons*. 56: 815–817. doi:10.1016/j.bjps.2003.08.009
- Conrad, F. (1994). "Surgical and other aerosols-Protection in the operating room." *Professional Safety*. 39.8: 28. Proquest Research Library. Retrieved 22 September 2011.
 http://search.proquest.com/docview/200434141?accountid=465
- Dupont. (2011). "DuPont "Teflon" Pure Silicone Lubricant Aerosol." Dupont Safety Data Sheet. http://www2.dupont.com/Products_and_Services/en_AU/assets/downloads/dcse%20msds/teflon%20lubes/Pure%20silicone%20lube%20MSDS.pdf>
- Grimes, C., Aughwane, P., Klein, M. (2010). "A reaction to silicone spray." *Endoscopy*. 42: E128. doi: 10.1055/s-0029-1243985
- High Island Health. (2011). "Lubricant Applicator." http://www.highisland.com/detail.php?bid=&productid=7
- IMS Company. (2011). "Material Safety Data Sheet for Silicone Grease Lubricant." http://www.imscompany.com/msds/100585-100586-100830.pdf>
- Lacour, M. and Le Coultre, C. (1991). "Spray Induced Frostbite in a Child: A new hazard with novel aerosol propellants." *Pediatric Dermatology*. 8:207-209.
- LPS. (2011). "Material Safety Data Sheet for Heavy Duty Silicone Lubricant." http://www.lpslabs.com/technical_info/msds/11516.pdf>
- McClellan Automation Systems. (2011). "Silicone Oil Atomization Spray Chamber." < http://www.mcclellan-automation.com/>
- Moser, S. (1999). "Aerosol-Induced Frostbite Injury." *Resource Library-The CBS Interactive Business Network*. < http://findarticles.com/p/articles/mi_m0689/is_9_48/ai_59407920/>
- (2011). "Rusch Silkospray." Teleflex Medical Inc. <www.teleflex.com>
- Silicone and Silicon. (2006). Accessed 21 September 2011. http://www.silicon-silicone.com/
- Tool Shack. (2011). "Ken Tool Bead Lubricant Applicator." < http://www.toolshackanaheim.com/SearchResults.asp?mfg=Ken-Tool>
- Valencia, et al. (2006). "Lubricant for conveying containers." United States Patent. Patent #US2006/0211582A1.

Questions?

