Standing Paraplegic Omni-directional Transport

Justin Cacciatore, James Madsen, Michael Konrath, Bret Olson, Blake Marzella

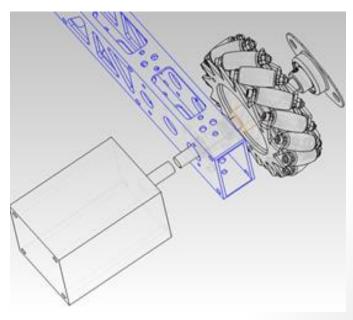
Advisor: Professor Amit Nimunkar Clients: Dr. Cuppels, Dr. Jones

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

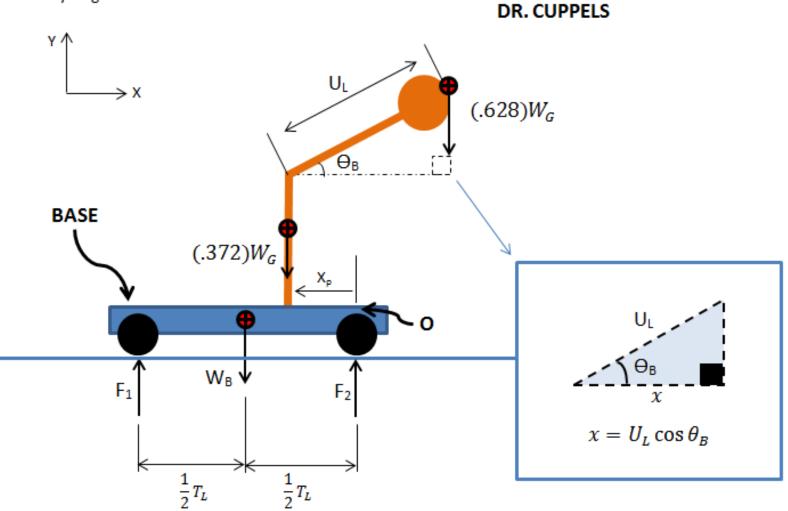
Standing Paraplegic Omni-directional Transport ...

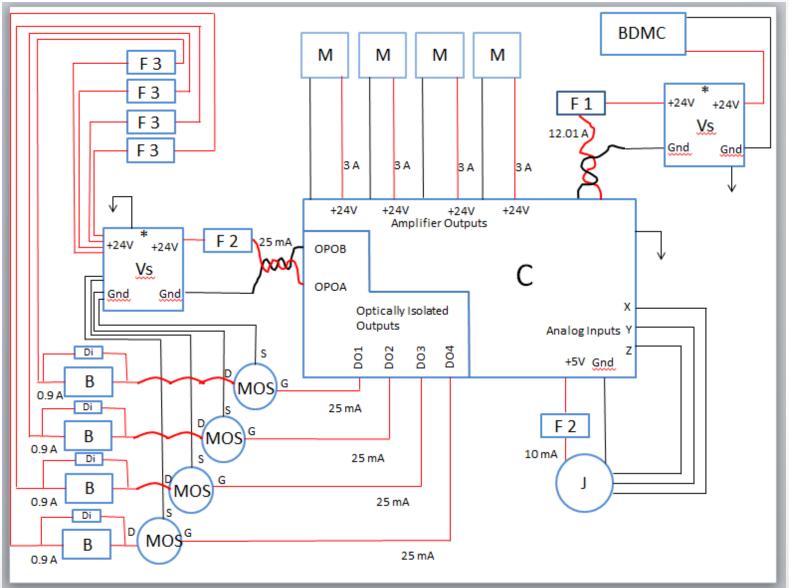
http://www.youtube.com/watch?v=gK52RkbGw9s

Standing Paraplegic Omni-directional Transport (SPOT)


Current Status of the Project

Base Design & Fabrication


- Materials
 - Aluminum & Steel
- Components
 - Mecanum Wheels
 - Toughboxes
- Contains
 - Motors
 - Motion Controller
 - Batteries
 - Brakes



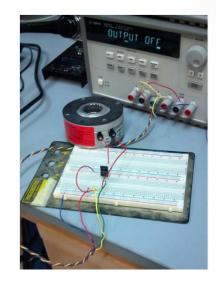
Base Safety Analysis

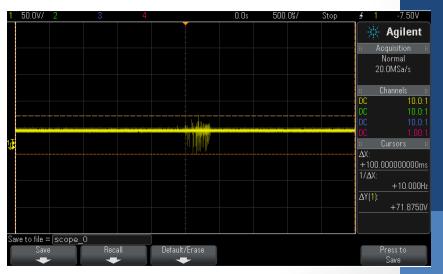
Free Body Diagram

Circuit Design

Primary Circuit Components

- Controller
- Stepper Motors
- ERS Brakes
- Joystick
- Connectivity

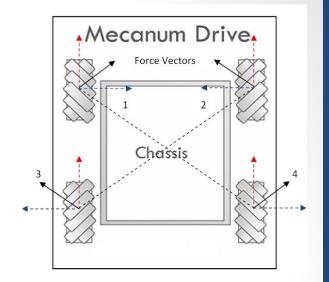




Circuit Protection

- Fuses
- BDMC
- Circuit boxes
- Diodes Brake Circuit

1 50.0V/ 2 3 4 0.0s 500.0s	/ Stop <u></u> 43.1V
	🛛 🔆 Agilent
	a Acquisition a
	Normal
	20.0MSa/s
	🗉 Channels 🗉
	E Channels E DC 10.0:1
	DC 10.0:1
	DC 10.0:1
	DC 1.00:1
	∷ Cursors ∷ ∆X:
	+100.00000000ms
	1/ΔX:
	+10.000Hz
	ΔY(1): +31.8750V
Cursors Menu	
 Mode Source Cursors X1: -50.00000000ms Manual 1 Y2 X2: 50.00000000ms 	: Y1: -625.0mV Y2: 31.2500V



Dissipation Diode

No Protection

Programming

- Programming needs to:
 - Read joystick position
 - Adjust speed of each motor accordingly
 - Engage the brakes when not in motion
 - Shut down everything at the push of a button
- Pre-alpha version of program has been written
- Still need to:
 - Test program with Galil controller, motor, and brake
 - Test program with finished base and circuitry

Future Work

- Continue:
 - Fund Raising
 - Material Acquisition
- Construction
 - Finish the base
 - Build the circuit
 - Finalize programming
 - Stability mechanism
- Testing
 - Safety
 - Cadaver and residency testing

Acknowledgements

- Professor Amit Nimunkar
- Dr. Garrett Cuppels
- Marissa Tucker
- Phil Kolmeyer
- Dr. Jones
- Berlin Memorial Hospital Staff
- Professor Willis Tompkins
- Bill Koepcke
- Andrew Norman
- Matty Neikrug
- Lee Sun Kyu
- Individual Donors!

Thank You Corporate Sponsors!


The Power of Experience

Industri<mark>al</mark> Au<mark>tomation</mark>

Thank You

