BioMEMS Photomask Aligner

Ross Comer - BWIG Paul Fossum - Communicator Nathan Retzlaff - BSAC William Zuleger - Team Leader

Client: Professor John Puccinelli, PhD Advisor: Professor Willis Tompkins, PhD

- BioMEMS
- Photolithography
- Current Alignment Techniques
- Previous Design
- New Design and Fabrication
- Future Testing and Work
- Q&A

Biological MicroElectroMechanical Systems

- The science of very small biomedical devices
- Subset of MEMS
- At least one dimension from 100nm to 200µm
- New materials that aid our understanding of the microenvironment or biocompatibility

Photolithography

[2] [3]

- Optical means for transferring a pattern onto a substrate
- Patterns are first transferred to an imagable photoresist layer

Basic Steps to the Process

- Clean the wafer
- Form a barrier layer formation
- Spin application of the photoresist
- Soft bake to harden the photoresist

Align the Mask

- UV Exposure and development
- Hard bake to further harden the photoresist and improve adhesion

Karl Suss MA-6 Mask Aligner

- Electronic
- Multiple wafer sizes
- Accuracy ~ 0.5 microns
- Expensive (\$30,000 used)

[4]

Dr. Justin Williams' Method

- Utilizes former microscope stage
- Manual adjustment
- Glass separating UV light and mask
- Accuracy ~ 50-200 microns

Dr. John Puccinelli's Method

Design Requirements

- Create a photomask aligner that is:
 - Accurate between 10µm and 100µm
 - Less than \$200 to fabricate
 - Relatively simple to use
 - Reproducible by other labs

Key Components

- Epilog 40 Watt Laser Cutter
 - Set between 75-1200 dpi (up to ~21 µm resolution)
- Wafers
 - WRS Materials (vendor)
 - Flats
 - 1 or 2 flat edges depending on crystal plane direction
 - 3" wafer
 - Diameter tolerance $\pm 300 \ \mu m$
 - 6" wafer
 - Diameter tolerance $\pm 200 \ \mu m$

Previous Prototype

- Largest drawbacks/ shortcomings:
 - Crushed Wafers
 - Threaded rod inhibits user control over wafer compression
 - Inadequate "lip" height
 - No alignment pin taper
 - Difficulty placing masks
 - Rigidity of alignment pins
 - Surface smoothness lacking
 - Layer thickness of 3D printer

Modified Prototype

Changes

- •Base Material = 100% Acrylic
- •Separable Layers
 - •0.030" Delrin w/ 3M 300LSE adhesive backing
- Threads directly into acrylic base
- •Tapered alignment pins
- •Future methods
 - Move away from threaded rod
 - •Springs
 - •Rubber Bands with multiple locations
 - Added vertical tension on lock bar

Fabrication

Comparison

Final Design from Fall 2011

ltem	Cost
3D Printing	\$152
Hardware	\$6.47
TOTAL	\$158.47

Current Model

ltem	Cost
Acrylic Cutting Board	\$9.99
Hardware	~\$7.00
Delrin Adhesive Sheet	Sample only (Donated)
TOTAL	~\$17.00

Test	Accuracy Results	
	Fall 2011	Current Design
2 Layer Photomask	~180 um	?

Laser Cut Testing

- Use of 40W Epilog laser to cut holes in mask transparency
- 1200 dpi ≈ 21 µm
- Testing done to determine optimal settings for cut
- Results: 50% speed, 20% power, full frequency

Laser Cutter Testing Results

Speed:50 Power:10

Future Testing

- Find ideal hole diameter and spacing for new prototype (Corral Draw)
- "2-layer photomask test"
- Alignment accuracy with 2 and 3 layer photolithography projects
 - Compare to other alignment methods
 - Puccinelli naked-eye method
 - Williams lab method
 - Expensive high-tech method
- Delrin material exposure resistance to UV
- Mask hole abrasion with repeated use over pins

Other Future Work

- 3D CAD models for future fabrication reference
 - Prints and/or fabrication description
- Tension method fabrication (rubber bands or springs)
- DIY Report written in style for Lab on a Chip: Miniaturization for Chemistry, Physics, Biology, and Bioengineering in the "Chips and Tips" section. (Published by Royal Society of Chemistry)

Acknowledgements

- John Puccinelli, PhD, Associate Faculty Associate, UW-Madison BME, Client
- Willis Tompkins, PhD, Advisor
- Greg Czaplewski, Graduate Research Student, Williams Lab
- Sarah Brodnick, UW-Madison Engineering Silicon wafer order coordinator
- Justin Williams, PhD, Associate Professor BME (BioMEMS instructor)
- COE Student Shop
- CS Hyde Company, Delrin material supplier

