STEP RATE MONITOR FOR GAIT ANALYSIS

Carmen Coddington ${ }^{1}$, Christa Wille ${ }^{1}$
Advisor: Mitchell Tyler ${ }^{1}$ Client: Bryan Heiderscheit ${ }^{2}$, PT, PhD Departments of Biomedical Engineering ${ }^{1}$ and Orthopedics \& Rehabilitation ${ }^{2}$, University of Wisconsin - Madison

Figure 3 (above). Final design block diagram. The design needs to collect analog data, convert it to digital.
and manipulate it to determine the step rate.

Figure 5 (above). User interface that is
displayed to indicate the runner's step rate.
Figure
attachm
bracket Figure 4 (above). Graphical representation of the key values to calculate
step rate. A calibration period is used to identify key parameters such as step rate. A calibration period is used to identify key parameters such as
threshold and the time delay. Data is then filtered and all values below the threshold are set to zero. Every time the signal crosses the threshold, a step is counted and the time delay begins to ensure that multiple vibrations are not counted for a single step.

| Attachment | |
| :--- | :--- | :--- |
| | Item Price
 Accelerometer (1) $\$ 275$
 Magnets (4) $\$ 8.00$
 MatLab (1) $\$ 500$
 Signal Conditioner (1) $\$ 495$
 DAQ System (1) $\$ 1,479$
 Total Cost $\$ 2,757$ |

 accelerometer in the correct
orientation. Neodymium magnets single prototype: $\$ 2,757$. These
calculations assume the facility will orientation. Neodymium magnets
are used to secure to treadmill.

Criteria and Speciffications

Specifications:

- Uniaxial accelerometer (PCB Piezotronics, model U353B16)
- Attachment method: 4 neodymium magnets
- Placement: Front, center on support beam below treadmill belt - DAQ System: NI USB-6212 , MatLab DAQ Toolbox

Criteria:

-Compatible with clinical treadmill created by Standard Industries - Must not compromise the infrastructure of the treadmill - Must not compromise the infrastructure of the tread - Accurately identify step rate of an individual (within 3\%) - Feedback of runner's step rate updated frequently - Identified step rate must be displayed in real time

Future Work

SmartPhone App

- Move interface to an application on SmartPhones
- Can be used in fitness centers by connecting to preinstrumented treadmills

Reduce Cost
Reduce Cost

- Use a different method of programming to eliminate cost of a MatLab license
Determine the effectiveness and accuracy of a microcontroller to identify step rate
Improve Signal Filtering
- Reduce noise while retaining biologically relevant data - Increase magnitude of relevant data to improve signal to noise ratio

Further Testing

Make algorithms more robust to improve accuracy with diverse body types and running styles
Determine the effectiveness of the device on different clinical treadmills
Device Interface with Runner

- Provide visual relevant feedback for runner in the form of a graph of
- Displaying a "green zone"
- This will facilitate altering step rate

Acknowledgements - UW - Madison \quad - Aldo Arizmendi, National Instruments $\begin{array}{ll}\text { Mitchell Tyler } & \text { - Deborah Yagow, National Instru } \\ \text { Gerhard van Baalen }\end{array}$ - Chiung-Yi Tseng, Mathworks Amit Nimunkar Amit Nimunkar
James Madsen Carrie Frances

References

[1] USA Track and Field Road Running Information Center. State of the sport report Ionine].

