DEVELOPMENT OF AN UPPER EXTREMITY FRACTURE MODEL

Kim Maciolek (Team Leader) Hope Marshall (Communicator) Gabe Bautista (BSAC) Kevin Beene (BWIG) Advisor: Dr. Thomas Yen Client: Dr. Matthew Halanski

PROBLEM STATEMENT

- Teach proper and safe techniques of fracture reduction and immobilization throughout the process of cast application and removal using a forearm fracture simulator
- Forearm fracture simulator must provide immediate feedback to the user to monitor fracture reduction:
 - Bone alignment
 - Applied force (three-point molding, cast saw)
 - Temperature at skin surface

CLIENT DESCRIPTION

- Dr. Matthew Halanski
 - Pediatric orthopedic surgeon at UW Hospital & Clinics
 - Research interest in safe fracture reduction

DESIGN CONSTRAINTS

Forearm fracture simulator must:

- Mimic the size of pediatric forearm (18 cm long, 5 cm wide)
- Protect sensors for damage by the saw
- Measure & display temperature, pressure & alignment in real time
- Clearly indicate successful fracture reduction
 - \circ <15° angulation
 - o <2 mm displacement</p>

MOTIVATION

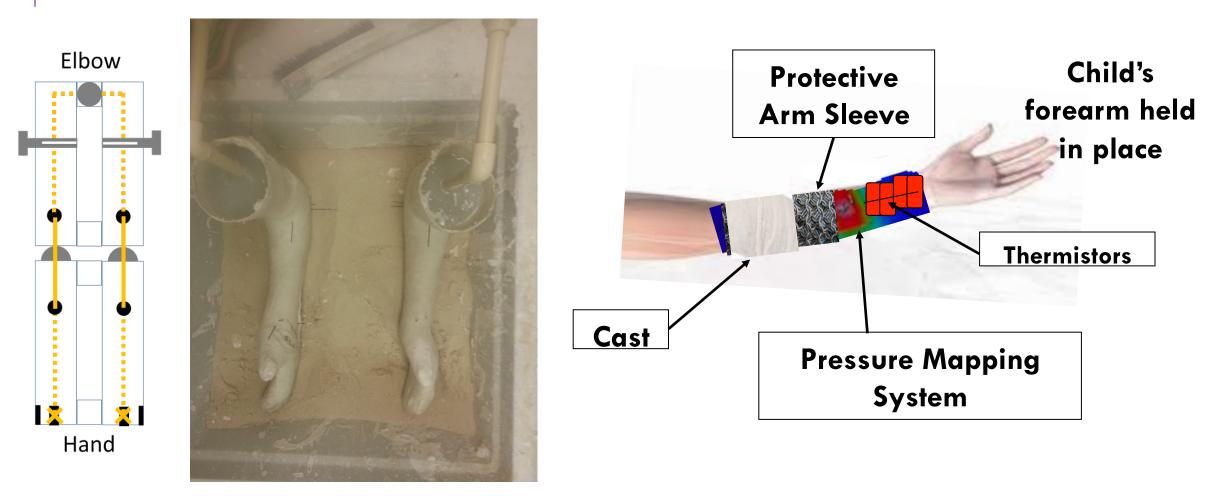
- 1/3 of children will suffer a fracture, forearms most common (Hedström. Acta Orthopaedica 2010; 81(1):148–153)
- Casting is not always safe!
 - Cast accidents are #1 cause of litigation, each can cost up to \$120,000 (Killian, J of Ped Ortho. 1999. 19(5): 683-7)
 - Little formal, hands on training for residents

Figure 1: Cast saw burns (courtesy of Dr. Halanski).

CURRENT DEVICES

Figure 2: Client's prototype (courtesy of Dr. Halanski).

PRELIMINARY PROTOTYPE



🖆 Fracture Model Sensors 😑 💌					
Sensor Values Not Connected					
Thermistor:	FSR:	Flex Sens	or:		
			-		
	Connect	Disconnect			

CURRENT PROTOTYPE

EVALUATION AND TESTING

- Latex Tubing Modulation of Resistance MTS Testing
 - To failure
 - Static testing
 - Tension: cycles of stretching bands 0%-30%
- Temperature sensors
- Alignment and Pressure Sensors: Cast Index and X-Ray Verification
 - Accuracy
 - \circ Precision
- Effectiveness of the device as a learning tool
 - Each person is own control
 - Test, practice, retest
 - Evaluate improvement over time

TIMELINE

Evaluation

- 3/01 Modular mechanical components & flex sensor integration
- 3/15 Soft tissue incorporation
- 3/22 Pressure mapping system integration,
- Construction 4/01 Update user interface

- 4/12 Validate sensitivity with expert users
- 4/26 New user testing, teaching model

DESIGN IMPROVEMENTS

- Accessible internal components
 - Modulate resistance in multiple plains
- User manual including maintenance instructions & safety warnings
 - Additional surgical tubes with instructions about fatigue
 - Replacement skin layers after damage
- All components easily removable from board & able to rotate
 - Components easily transported in a small box plus board

FUTURE COST ANALYSIS

Additional Materials	Quantity	Cost Estimate
Thermistors	12	\$13.00
PlatSil Gel-10	4 lbs	\$50.00
Flex Sensors	6	\$75.00
Pressure Mapping system	1	\$10,225
Miscelaneous Mechanical and electrical Components	-	\$30
	TOTAL:	\$10,393.00

CURRENT COST ANALYSIS

Material	Quantity	Cost
Plywood Base	1	\$5
PVC Pipes	1	\$1.25
Thermistor	3	\$3.24
Force Sensing Resistor	1	\$20
Arduino Mega Microcontroller	1	\$47.99
Arduino Starter kit	1	\$22.50
Protective Sleeve material	48"x 84"	\$7.85
PDMS	500 grams	\$60
PlatSil Gel-10	6 lbs	\$100
USB A-B Cable	1	\$4.00
1/4" ID Latex Surgical Tubing	17'	\$36.00
Prewrap material	1 roll	\$5
Flex Sensor	2	\$24.90
Miscelaneous Mech. Components	-	\$O
TOTAL:		\$330.50

QUESTIONS?