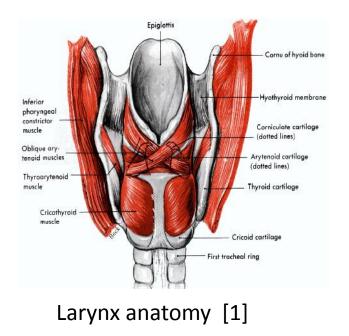

Laryngeal Bioreactor Mid-semester Presentation

Sara Schmitz- Captain Ben Smith-BSAC Armand Grabowski- BWIG Taylor Milne- α -Communicator Brett Napiwocki- β-Communicator Dr. Thomas Yen- Advisor Dr. Nathan Welham- Client Zhen Davis- Client Dr. Yutaka Toya- Collaborator

Outline

- Problem statement
- Client description
- Design constraints
- Significance
- Last semester summary
- Modifications
- Goals
- Testing
- Budget
- Design improvements



Problem Statement

• Design a bioreactor that uses vasculature perfusion to perform decellularization and recellularization a human larynx.

Client Description

Dr. Nathan Welham PhD, CCC-SLP

- Assistant Professor at UW
 School of Medicine & Health
- UW Health Clinics
- Specialties: Pediatric voice and swallowing disorders
- Research Interests:
 Proteome analyses, vocal fold scarring and treatment, animal models

Design constraints

- Sterilizable or replaceable components
- Perfusion-based
- Separate environment for larynx lumen and exterior

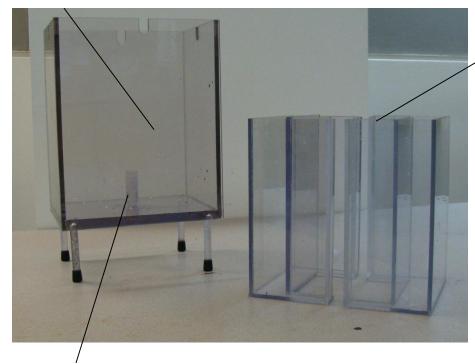


Significance

- Each year almost 136,000 patients are diagnosed with laryngocarcinoma
- Immune rejection associated with traditional allographic transplants
- Whole organ bioreactors exist for heart, lung and trachea
- No laryngeal bioreactor commercially available

Bioreactor for trachea [2]

Last Semester



Bioreactor vessel

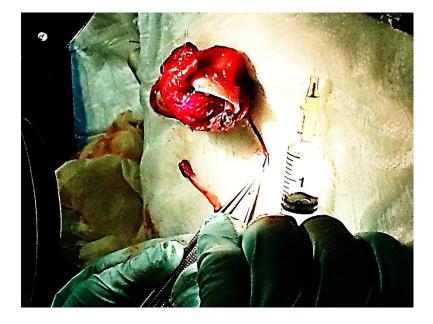
Final Design

Trachea support

Insertable space-filler

Last Semester Testing

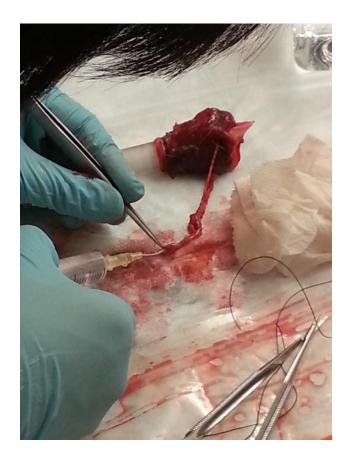
Vasculature Pump


Inner Lumen Pump

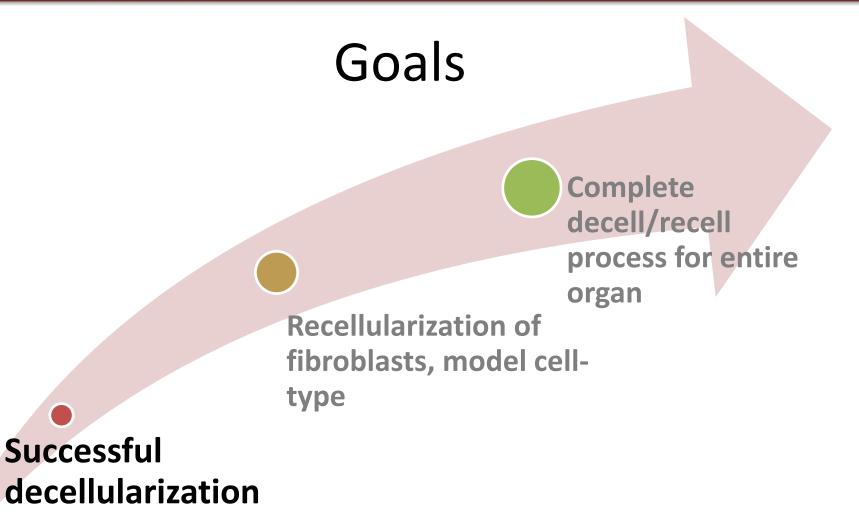
Speed (RPM)	Time (sec)	mL/min	Speed (mL/m	in) Fill Time (sec)
100	77.47	19.4	Speed (mL/m	
90	84.5	17.75	63.63	30.49
80	96.3	15.58	53.63	36.54
70	108.77	13.79	43.63	44.98
60	128.54	11.67	33.63	58.32
50	153.94	9.74		
40	193.15	7.77	23.63	82.99
30	257.64	5.82	13.63	143.48
20	387.01	3.88		
10	773.14	1.94		

Preparation

Setup



Modifications


- Circulating inner lumen fluid

 Inferior to superior flow
 Outlet via endotracheal tube
- Attachments
 - Arterial cannulae
 - Vasculature pump tubing to cannulae
 - Endotracheal tube to extra tubing

Decellularization Testing

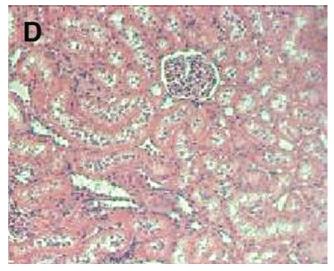
- SDS
 - Perfuse through vasculature
 - Circulate through inner lumen
- Bioreactor filled with
 - Deionized water
 - SDS
- Assays
 - Progressive biopsy
 - Histology

Goals

Complete decell/recell process for entire organ

Recellularization of fibroblasts, model cell-type

Successful decellularization



Recellularization Testing

- Fibroblasts and media perfused through scaffold
- H & E staining
 - Observe where fibroblasts have implanted
- Incorporate different cell types
- Direct seeding as well as perfusion

H&E stain [3]

Design Improvements

- Automate pumps for the recellularization process
 - Ease of use
 - Minimal human interaction
- Incorporate sensory equipment (pH, temperature, pCO₂)

Budget for Bioreactor

Component	Material (Manufacturer)	Cost
Bioreactor	Polycarbonate (Grainger, Midland Plastics	\$126.55
Pumps (perfusion, vasculature)	Peristaltic pumps (Langer Instruments)	\$1,329.00
Miscellaneous & accessories	Stainless steel (McMaster), Trach Tubes	\$47.61

Total = \$1503.16

Budget for Individual Use

- Cost of media
 - Varies depending on media type
 - \$100-400 per 500 mL*
- Total volume: 1.5-2 L
 - Change media once/week for 4 weeks
- Estimated cost: \$1600 \$6400

*Estimate from Dr. Welham on October 15, 2012

References

- 1. Organ Procurment and Transplantation Network. http://optn.transplant.hrsa.gov/organDatasource/.
- http://www.businessinsider.com/lab-grown-organs-2012-8?op=1 Asnagni 2009 Biomaterials
- 3. http://jasn.asnjournals.org/content/20/11/2338/F1.expansi on.html]

