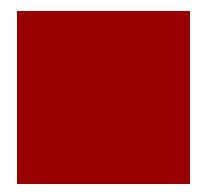
Laryngeal Bioreactor

Midsemester Presentation

Kyle Anderson – BSAC

Peter Guerin – BWIG, BPEG

Rebecca Stoebe - Communicator


Dan Thompson – Team Leader

Professor Tracy Puccinelli – Advisor

Dr. Nathan Welham, Dr. Yutaka Yoya, Dr. Steve Lee - Clients

Outline

- Problem Statement
- Client Description
- Significance
- Last Semester Summary
- Initial Testing
- Goals
 - Testing
 - Design Improvements
 - Documentation
- Budget
- Timeline

Problem Statement

- Bioreactor capable of decellularization and recellularization of laryngeal tissue
- Allow horizontal fixation of larynx and ability to expose tissue to both air and media through automated controls
- Provide separate environments for vasculature, inner lumen and exterior of tissue
- Allow easy access to tissue while minimizing media used
- Use of biocompatible, autoclavable materials
- Allow function of bioreactor in lab, incubator, and refrigerator

chttp://www.intechopen.com/books/inno
vative-rheumatology>

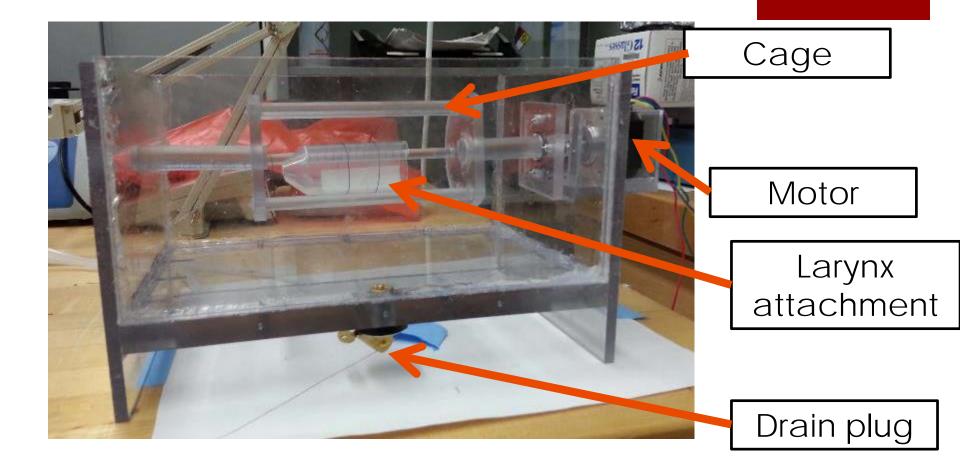
Client Description

- Dr. Nathan Welham
- Assistant Professor at UW School of Medicine
- Specializations:
 - Speech-language pathology
 - Treatment of disorders of airway and voice
- Dr. Yutaka Toya, Dr. Steve Lee

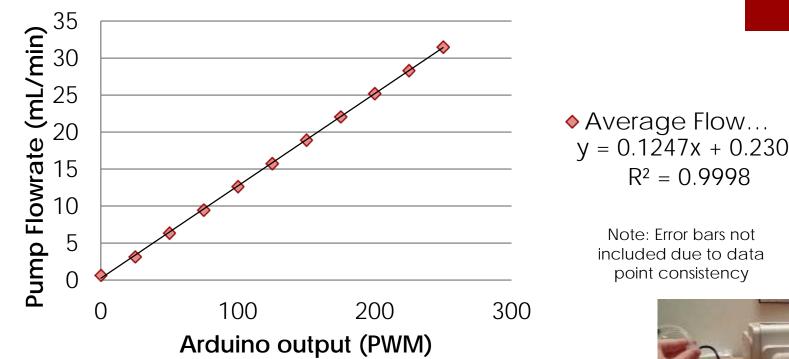
Dr. Nathan Welham http://www.surgery.wisc.edu/system/assets/17 7/Welham_Nathan_2013_ForWeb_profile.jpg% 3F1373387179

Significance

- Need for larynx transplant:
 - 136,00 cases of laryngeal cancer per year globally
- Low success rate for laryngeal transplant
- No known currently available bioreactor for laryngeal tissue



<http://voicedoctor.net/media/normal-vocalcord/normal-female-vocal-cords>.



Cancerous Vocal Folds <http://www.massgeneral.org/voicecenter/mult imedia/>

Last Semester – Final Design

Last Semester – Testing

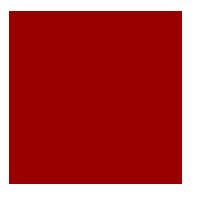
Average Flow Rate vs PWM (Large Pump)

y = 0.1247x + 0.2308

Pump testing

Current preliminary testing

Current prototype undergoing testing



Partially decellularized larynx in prototype

- Completed modifications:
 - Program modified for greater ease of use
 - Bioreactor resealed
 - Hole drilled to prevent liquid interfacing with motor
 - Holes drilled for access

Testing: Fluid Dynamics Modeling

- Oxygen penetration calculations
 - Predict oxygenation profiles within tissue constructs
 - Goal: determine optimal rotation profile for tissue
- Solidworks/Ansys-based computational fluid dynamics modeling
 - Assess impact of fluid flow on bioreactor, tissue
 - Goal: develop basic preliminary model for predicting tissue response under bioreactor conditions

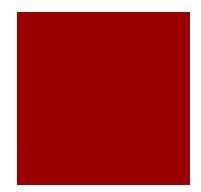
Sample fluid dynamics modeling with Solidworks

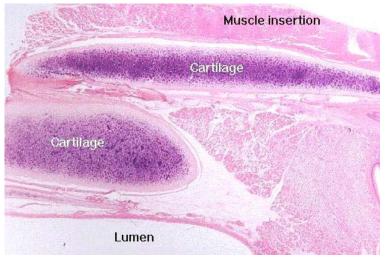
http://blog.capinc.com/wpcontent/uploads/2012/02/2012-02-08-Flow-Simulation-2012-SP2-HVAC-Module.png

Testing: Decellularization

SDS:

- Perfuse through vasculature
- Circulate through inner lumen
- Assays:
 - Progressive biopsy
 - Histological staining
- Variables considered:
 - Time spent in SDS
 - CHAPs as an alternative SDS
 - Detergent concentration
 - Larynx movement
 - Flow profiles in bioreactor

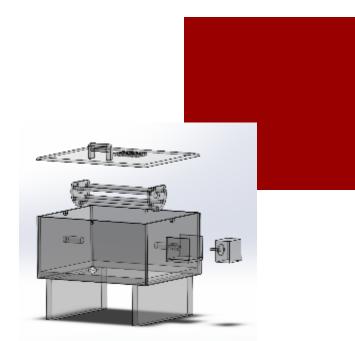

Fresh larynx extracted from laryngectomy



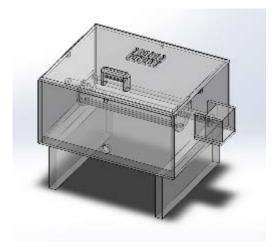
Partially decellularized larynx Laryngeal Bioreactor

Testing: Recellularization

- Fibroblasts and media perfused through decellularized scaffold
- Evaluation of cell uptake:
 - Histological examinations
 - Assay for engraftment, apoptosis, proliferation, cell survival
- Variables to consider:
 - Direct seeding vs. perfusion
 - Incorporation of multiple cell types
 - Flow profiles

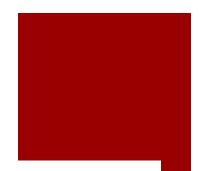


Example H&E stain for intact larynx


http://www.vetmed.vt.edu/education/curriculum/v m8304/lab_companion/histopath/vm8054/labs/Lab25/EXAMPLES/EXLARYNX.HTM

Design Improvements

- Alter product dimensions
- Use of new materials
 - Sealant
- Incorporation of fabricated details for ease of use
 - Securing tissue
 - Allowing better placement of tubing
- Different incorporation of electronics
 - Change motor housing
- Use of a more accurate fabrication technique
- Alteration of drain placement
- Incorporation of a lid



Device redesign

Documentation

- User Manual
 - Manipulation of electronics
 - Altering program to suit individual need
 - Use of different programs for more complex applications
 - Product assembly, disassembly
 - Basic troubleshooting
- Service instructions
 - Product sanitation
 - List of parts for replacement, repair

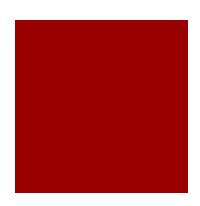
Arduino Uno http://www.liquidware.com/system/0000/3648/Ardui no_Uno_Angle.jpg

Budget

Past Expenditures

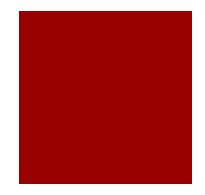
Details	Cost
Bioreactor Raw Materials: Polycarbonate	\$110
Pumps: Langer Instruments peristaltic pumps	\$1,295
Electronics: Arduino Uno, Stepper Motor, Stepper Driver, etc.	\$113
Miscellaneous: Hardware, seals, glue, etc.	\$20
Total Cost	\$1,538

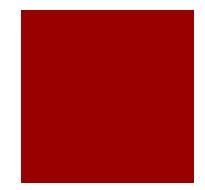
Future Expenditures


Details	Cost
Bioreactor Raw Materials: Polycarbonate	\$60
Electronics: Arduino Uno, Stepper Motor, Stepper Driver, etc.	\$75
Miscellaneous: Hardware, seals, glue, etc.	\$40
Total Cost	~\$175

Timeline			
February	March		April
Redesign	(Complete by 2/26)		
	Rebuild	(C	omplete by 3/15)
Build computational model			
Test v1 prototype			
	(Begin by 3/	25)	lest v2 prototype

Summary


- Bioreactor to decellularize/recellularize a larynx
- Rotates to promote fluid diffusion
- Fluid access to exterior, vasculature, and inner lumen
- Automation of rotation and pump flow



Acknowledgements

- Dr. Tracy Puccinelli Advisor
- Dr. Nathan Welham Client
- Dr. Yutaka Toya Client
- Dr. Steve Lee Client

Questions?