Designing a Novel Fixation Device for Pediatric Orthopaedic Tibia Fractures

Evan Lange, Karl Kabarowski

Tyler Max, Sarah Dicker

Client: Dr. Matthew Halanski, MD

Advisor: Dr. Paul Thompson, PhD

Biomedical Engineering Design

University of Wisconsin – Madison

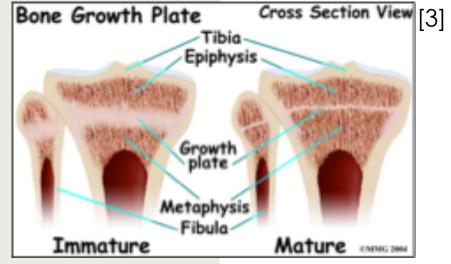
February 21st, 2013

Overview

- 1. Problem Statement
- 2. Background Information
- 3. Current Device
- 4. Product Design Specifications
- 5. Previous Work
- 6. Design Alternatives/Design Matrices
- 7. Design Selection
- 8. Future Work
- 9. Acknowledgements
- 10. Questions
- 11. References

Problem Statement

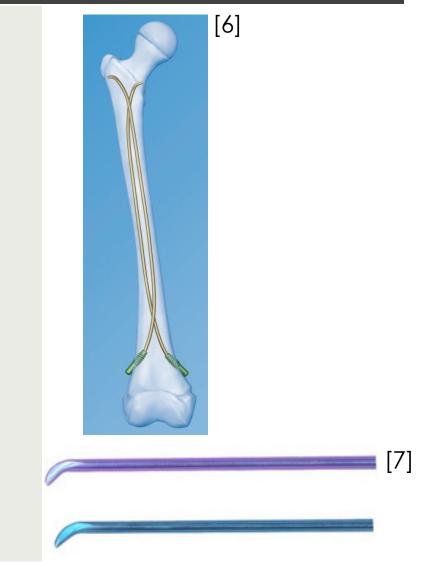
- Tibia fractures are common in children
- Need for a surgically implanted device, which would provide more structural stability and aid in healing of the fracture
- Last semester, we designed a new device, which uses compressive force on a metal biaxial braid to provide pressure inside the canal for stabilization.
 - The centerpiece of the device failed
 - Client had recommended improvements
- This semester's focus:
 - Optimizing previous semester's design
 - Centerpiece
 - Braid/cap interface


Background

- 5% of pediatric fractures occur at tibia^[1]
- Tibia is a load bearing bone
 - Correct alignment is essential
- Many bone fractures can be set with a cast or a splint
- Misalignment of tibia may require surgery followed by serial casting to repair the injury

Background

- Differences in child and adult tibia
 - Epiphyseal growth plates at proximal and distal ends of bone
 - Involved in growth spurt during puberty
- Growth plates must be avoided in all surgical procedures for pediatric patients
 - May lead to growth complications and more surgery if disturbed



Current Device: Elastic Nails

Made of titanium

2 elastic nails = six areas of contact meant to provide constant pressure and stabilization for fractured tibia^[4]

- Avoids growth plate
- Optimal function with midbone fracture
- No rotational fixation

Product Design Specifications

- Function
 - Improve stability of pediatric tibia fracture for healing
- Design Requirements
 - Performance
 - Flexible to enter bone (7mm at 45° angle)
 - Bending stiffness of fiberglass cast
 - Can be removed after 2-9 months
 - Size
 - Fits in tibial intramedullary canal
 - Safety
 - Biocompatible
 - Surgical grade metals
 - Easily sterilized
 - Standards and Specifications
 - FDA guidelines for implants

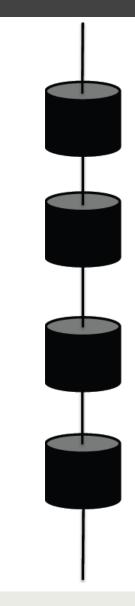
Previous Work – Braided Cylinder

- Braided Cylinder
 - Stainless steel biaxial braid
 - Axial Compression → Radial Expansion
 - 1 Surface Area results in 1 axial fixation

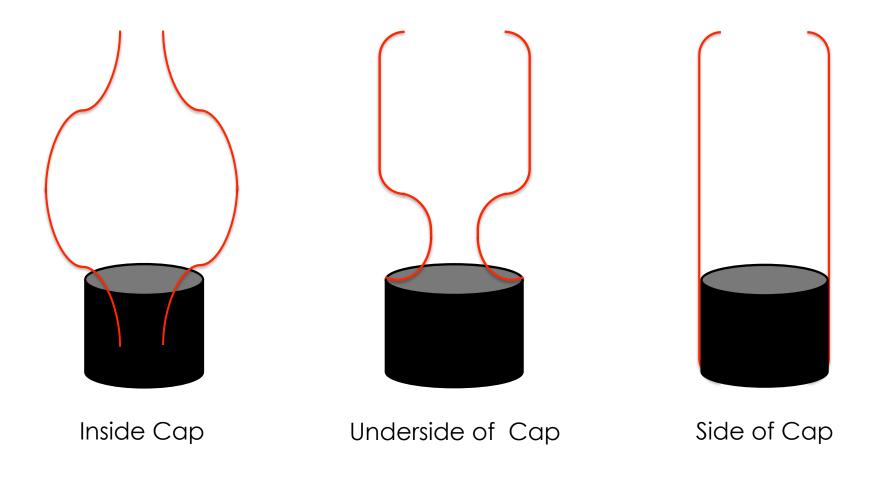
Car Jack – Design 1

- Car Jack Centerpiece
 - Several jointed threaded stainless steel segments
 - Make rod flexible for 45° insertion
 - Mid cap advances toward end cap
- Pro:
 - Easy to implant
- Cons:
 - Torsional strain
 - Complex

K-Wire – Design 2


- Centerpiece is K-Wire
 - Flexible threaded stainless steel rod
 - Currently used in surgical applications
- Caps not threaded
 - Use nut above topcap to provide compressive force
 - Bottom cap fixed to Kwire
- Pro:
 - One rigid piece
- Con:
 - More difficult to implant

Segmented Threads – Design 3


- Segmented threaded stainless steel pieces welded to a wire
- A nut would screw down free-sliding top cap from segment to segment
- Pro:
 - One piece
- Con:
 - Torsional rigidity

Design Matrix – Centerpiece

Parameters (Weight)	Last	Semester's Design	K-Wire		Piano Wire with	
			Andrewski		Segmented Threads	
Tensile Strength (30)	2	12	5	30	з	18
Ease of Implantation and Removal (25)	4	20	2	10	5	25
Client Preference (20)	2	8	5	20	3	12
Fabrication (15)	2	6	5	15	4	12
Cost (10)	1	2	5	10	4	8
Total (100)	48		85		75	

Optimization of Braid/Cap

Design Matrix – Braid/Cap

	Braid	welded inside	Braid	d welded to	Braid welded to side of	
<u>Parameters (Weight)</u>	caps		unde	erside of caps	caps	
Risk of inversion (40)	2	16	5	40	4	32
Stress on Weld (40)	5	40	4	32	2	16
Fabrication (10)	1	2	3	6	4	8
Cost (10)	2	4	5	10	5	10
Total (100)	62		88		66	

Final Design

- K-wire centerpiece
- Braid welded under cap
- Top cap not threaded
- Nut on K-wire above top cap to provide compressive force
- Bottom cap fixed to Kwire

Future Work

- Preliminary testing of braided cylinder
- K-wire 3-point bend test stress-strain curve
- 6-ply fiberglass cast 3-point bend test bending stiffness
- Design tool to twist nut during surgical implantation and removal
- Order Materials & Fabrication
- Test prototype 3-point bend test
 - Bending stiffness match or exceed 6-ply fiberglass cast
 - Compare to elastic nails
 - Mode of failure

Acknowledgements

- Dr. Matthew Halanski, MD
- Sarah Sund & Tana Sloan-Barsch
- Dr. Paul Thompson, PhD

Questions

References

[1] Mashru, R. P., Herman, M. J., & Pizzutillo, P. D. (2005). Tibial shaft fractures in children and adolescents. American Academy of Orthopaedic Surgeons, 13(5), 345-352.

[2] http://radiopaedia.org/images/25340

[3] http://www.orthopediatrics.com/docs/Guides/blounts.html

[4] Synthes. 1998. The Titanium Elastic Nail System: Technique Guide. Adapted from <http:// www.rcsed.ac.uk/fellows/lvanrensburg/classification/surgtech/ao/manuals/Synthe s%20TENS %20nails.pdf>

[5] He B, Wang J. Plate fixation of paediatric fractures of the distal tibia and fibula. Acta Orthop Belg. 2012 Oct; 78(5): 660-2.

[6] http://www.synthes.com/MediaBin/International%20DATA/036.000.207.pdf

[7] Adapted from http://www.tradeindia.com/fp580819/Titanium-Elastic-Nail.html

[8] Wheeless, Clifford, MD. 2012. Tibial Fractures: Techniques of IM Nailing. Wheeless' Textbook of Orthopaedics.

[9] Lee, Z., Chang, C., Yang, W., Hung, S. (2005). Rush pin fixation versus traction and casting for femoral fracture in children older than seven years. Med. J. 28: 9-15.