

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 1

Abstract -- An electrode device has been
designed to address the problem of phantom limb
pain, a neuropathic disorder caused by nerve
damage during limb amputation. Before this device
can be tested in humans, it must prove successful
in animal models. In order to generate functional
outcome data from rats, a healthy rat is trained to
conditionally respond to a specific somatosensory
stimulus. Then, the peripheral nerve is surgically
deafferented and the electrode implanted. The
device can then be used to apply the same
stimulus and the rat’s response can be measured.
Here we report the development of a device to
produce the somatosensory stimulation necessary
to train the rats. It consists of a testing enclosure
for the rat and motors to facilitate the stimulation
that are controlled by a microcontroller. The final
design features a plexiglass enclosure with two
platforms that vibrate via speaker actuator motors
underneath. The motors are connected using a
vibration damping foam to ensure isolation. The
Arduino Due with corresponding code produces
sine waves to drive the motors, and the frequencies
are set between 150-350 Hz by the user via the I/O
console. Testing has shown that the current device
is able to successfully output vibrational
frequencies within 3.8% error of those set by the
user. Using this device for animal testing will be
crucial for determining the efficacy of the
electrodes and completing the FDA requirements.

 Index Terms -- peripheral nerves, nerve
damage, electrode therapy, nerve regeneration,
somatosensory stimulation, animal testing

I. Introduction
 There are 185,000 amputee surgeries every
year in the United States. In these surgeries, patients
receive amputations of one or more limbs as well as
other body parts. [1] All of these amputations can lead to
phantom pain, however amputation of limbs is cited as
the most commonly reported source of this pain.
Phantom limb pain (PLP) is a neuropathic shooting or
burning pain that is caused by the misfiring of the
nerves damaged during amputation. [2] Some 42.2-

78.8% of amputees suffer from PLP either immediately
following surgery or years later. Treatments consist of
both pharmacological and non-pharmacological
approaches, but due to the lack of knowledge in the
mechanism behind the pain, these treatments are often
ineffective.[3]

 A proposed solution to PLP, which is currently
being investigated, is an electronic interface for
peripheral nerves. This interface has electrodes that
could be implanted around the nerve(s) deafferented
during amputation and prevent phantom limb pain,
potentially serving as a means to restore the amputee’s
sense of touch through tactile sensors embedded in a
prosthetic limb. For the most part, phantom limb pain is
a result of the damaged nerves near amputated body
parts misfiring, transmitting pain through the nervous
system and causing our brain to register it as pain
coming from or near the missing body part. This
electrode device could potentially reduce the frequency
of or otherwise mitigate the effects of this misfiring,
ultimately serving to reduce or relieve phantom limb
pain in the patient.

The device is in the animal testing stage of the
FDA approval process, Phase-1, and a device that
allows for proof of concept testing in rat models is
needed. Functionality testing for this type of device in
humans is simple since the researcher can ask the
subject if he or she felt a sensation in their amputated
limb. In rats, however, a nonverbal method is needed in
order to determine the device’s functionality.
 A common method for obtaining functionality
data from rats is to collect data and create an “S”
shaped histogram of percent correct responses versus
stimulation amplitude (Figure 1). This stimulus-
response (SR) data can be collected by training a
healthy rat to respond in a specific way to a certain
stimulus. For example, a rat can be trained to poke its
nose in a hole on its right side after receiving a
vibrational stimulus on its right foot. Ideally, using a
large range of vibrational frequencies should then
produce an “S” shaped curve of data points. In order to
test this device, the SR curves of healthy rats and rats

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 2

with that have the device implanted will be compared.
Success of this device will be demonstrated by
observing similar curves between the normal rat and
the surgically altered rat. The similarity indicates that
stimulation of the deafferented nerve after electrode
therapy feels that same as the stimulus on the normal
limb of the rat.

Figure 1. An example of an “S” histogram of percent correct
response versus stimulation amplitude in trained rats. (a) The
experimental setup for obtaining the data 1). The rat receives a
tactile pulse stimulus. 2) Upon detection of the stimulus, the rat
presses the target button. 3) The rat is rewarded with water for
correctly responding to the stimulus. No reward is given if the
response is incorrect. (b) The resulting curves of percent of times
the target was pressed vs the stimulus amplitude in this experiment
under three different conditions. [4]

II. Existing Technology

Current rat training enclosures on the market
include a rat testing cage from Coulbourn (Figure 2).
These cages lack floor or wall panels, but accommodate
additional training modules. These training modules
include a shocking floor and nose poke holes with optic
and olfactory stimuli.[5] While a shocking floor could
provide stimulus to both of a rat’s hindlimbs, it does
not allow for isolation of the stimulus onto a single
limb. This detail is critical for testing the efficacy of the
new electrode device.

Figure 2: Rat test cage from Coulbourn. This enclosure
accommodates different floors and wall panels for different types of
rat training. [5]

In order to perform rat testing that will prove
the efficacy of the electrode, a device is needed that can
stimulate a single rat hindlimb at a range of frequencies
from 150-350 Hz. This stimulus must not cause any
residual artifacts that may lead the rat to give the
correct response without proper functioning of the
electrode device. For example, the stimulus must be
completely isolated to one hindlimb so that vibration
cannot be felt in the opposite, healthy leg at the same
time. There must also not be any noise differentiation
between stimulus levels so that the rat cannot form
associations and respond based on auditory stimulation.

Figure 3: The rearing rat receives its reward by poking its nose
through one of the three holes in the cage wall. [6]

In addition to the part of the device that will

provide the stimulation, the device must also include an
enclosure in which the rats can be trained. The
enclosure must allow the user to view the rat during
testing. It should restrict non-experimental movement,
but not limit the rat’s ability to respond to the stimulus.
In order to do this, the cage should include three holes
at nose-height of a rearing rat so the rat can poke its
nose in the appropriate hole and receive its reward
(Figure 3). There are not any other devices on the
market that combine these design elements in a
satisfactory way, thus, the creation of a new device is
required.

III. Background

In order to elicit a response from the rat, the
somatosensory system must transmit the stimulus from
the peripheral nervous system neurons to the brain,
where a response action can be determined. The
somatosensory system has different receptor cells for
each modality of stimulation. Both humans and rats
have mechanoreceptors, thermoreceptors,
proprioceptors, pain receptors, and chemoreceptors.
Mechanoreceptors will be the focus of this device as

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 3

low mechanical vibration is used as the stimulus. In the
skin, humans and rats have three main cell types that
sense vibration (Figure 4). Merkel cells are closest to
the surface of the skin and sense low frequency
vibrations (5-15 Hz). Slightly deeper in the skin are
tactile corpuscles, which sense frequencies of 10-50
Hz. [7]

Figure 4: Mechanoreceptors in the skin. Merkel cells and tactile
corpuscles sense low frequency vibrations on the surface of the skin
while lamellar corpuscles sense higher frequency vibrations and
they transfer the information to the brain via the somatosensory
system.[7] Red boxes added by authors to emphasize key cells.

Lamellar corpuscles can sense higher
frequencies, with optimal sensing at 250 Hz. The
Lamellar corpuscles will be the main target for the
vibrations in this project. These cells often cannot be
targeted without propagating the vibration throughout
the rat’s body. Due to their anatomy and physiology, rat
bodies tend to attenuate vibrational frequencies of 31-
50 Hz.[8] For this project, only the hindlimb is
stimulated with low amplitude vibrations, and so
vibration of the rat’s body should not be an issue.
Training with stimulation of other body parts may
confound the results of the efficacy of the electrode.
 The rats that will be used in this experiment are
adult Lewis breed that range in size from 250-350 g.
These rats are commonly used as animal models due to
their physiological similarities to humans as well as
their mild temperament.

IV. Fabrication/Development
A. Materials and Methods

Plexiglass was selected for the enclosure to
allow for viewing of the rats during testing. The six
pieces of the cage were laser cut with interlocking tabs
and put together with acrylic glue. The enclosure
measures 0.25 x 0.28 x 0.3 m (10 x 11 x 12 in). The
floor piece included two cut outs for the actuators,
which provided the vibrations with 0.08 m (3 in) left
underneath it to hold the electronics. The highly
damping foam is used for the connection between the
cage and the actuator to isolate the vibrations and
prevent propagation throughout the cage. 3D renderings
of the enclosure are depicted in Figure 5 and Figure 6.

The electrical components include surface
transducers, an Arduino Due microcontroller, are wires.
The transducers have the actuator surface replaced with
a plexiglass platform that protrudes through the floor of
the enclosure. The microcontroller is responsible for
providing the output waveform at the desired
frequency.

Vibration-damping foam was molded into two
cylinders with 2 in diameter and 3 in height. The
vibrational motors were pressed into the top of the
cylinders and set out to air dry for 24 hours. These
foam cylinders with motors were then placed on a piece
of base plexiglass directly under the rectangular cut-
outs in the floor of the cage.

Figure 5: 3D rendering of the rodent cage using SolidWorks
consisting of 6 pieces with interlocking tabs.

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 4

Figure 6: Dimensioned drawing of the rodent cage with
measurements in inches.

B. Final Prototype

The final prototype begins with two surface
transducers. The original top of the transducer has been
replaced with a platform that fits into rectangular
cutouts in the floor of the enclosure. The modified
surface transducer can be seen in Figure 7. Each of
these transducers are placed in a pillar of damping foam
to increase the isolation of the resulting vibration

Figure 7: Surface transducer with attached platform

The system diagram (Figure 8) shows the
circuit/electronic connections. First, the system is
controlled using an Arduino Due microcontroller
(Figure 9) as well as the corresponding code. The Due
features two output ports with 12-bits resolution and
digital to analog conversion (DAC) built-in. These
specs will allow the Arduino to create a precise sine
wave. The sine wave will have a max 2.75 V peak-to-
peak signal, as limited by the microcontroller. A
frequency range of 150-350 Hz will be used for the sine
wave to provide a graded stimulus.

Figure 8: System diagram of electronics

Figure 9: Arduino Due microcontroller showing the two USB ports
for communication. [9]

The frequency range of the sine waves was

determined based on the surface transducer’s ability to
produce certain vibration amplitudes at various
frequencies. At very low frequencies, the transducer
produced very low amplitude vibrations, which could
not be felt when the motors were driven directly by the
Arduino. However, at higher frequencies, greater than
150 Hz, the vibrational amplitude was sufficient
enough to be felt without amplification. In addition, the
surface transducers behave more linearly at higher
frequencies, and this provides the device with more
consistent vibrations.

Therefore, the motors were able to be driven by
the DAC ports of the Arduino directly. Even though the
Arduino actually only produced a 2.2 V pk-pk and a
43mA signal, the surface transducers were still able to
provide sufficient amplitude. Driving the motors from
the Arduino directly allowed the team to greatly
simplify the electronics design by eliminating the need
for an amplification system as well as an external
power source. Simplifying the design helps to eliminate
unnecessary sources of error.

The stimulus is applied as desired using a
laptop. The user interface also allows for real-time
frequency variation. The user can set the operating
frequencies for both limbs, set the stimulus duration
and then apply the stimulus. This interface allows for
easy manipulation of the device while requiring no
knowledge of the electronics or code. More specifics
code and user interface follows in the software section.

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 5

C. Software
 The software for this project is split up into 3
different files: a .ino Arduino file, a .cpp C++ file, and
a .h Header file. The Arduino file contains the code for
the user interface as well as error handling and the
C++/Header files contain the code for creating and
writing the sine waves.
 The Arduino file contains code entirely written
by this team. The user interface in implemented using
the serial monitor console, which is built into Arduino.
The code communicates with the console by using
serial communication along with a variety of serial
commands built into Arduino software. The team
determined that optimal communication/function of the
code occurred when the analogReadResolution() and
the analogWriteResolution() where set to 12 and the
Serial.begin() was set to 9600, which is the baud rate.
 Another important consideration for the serial
communication was which USB port on the Arduino
was best to use. The Arduino Due contains a Native
USB port and a Programming port (both ports are
labeled in Figure 9). The Native port allows for higher
speed serial communication but the Programming port
is better for uploading code to the Arduino. Unlike
other Arduinos, the flash memory on the Arduino Due
must be erased before new code can be programmed to
the board. The Programming port does what is known
as a “hard erase” which is more reliable than the “soft
erase” of the Native port. Since the Programming port
also provides decent serials speeds (up to 115200 bits
per second), the team decided to use the Programming
port for the device’s communication.
 The full Arduino code can be found in
APPENDIX III, but the software block diagram in
Figure 10 provides a brief overview of the code.
Essentially, the code needs the left frequency, the right
frequency, and the stimulus duration from the user. The
stimulus duration can be set as one global stimulus that
is used for each iteration, or the duration can be set for
each stimulus individually. Once all three parameters
are set with valid inputs, the code can apply the
stimulus by calling the functions outlined in the
C++/Header code.
 The C++/Header files were based on free
source code found online which was then altered to fit
the needs of this project (code found at source [10]).
These files create a SineWave object that contains
different methods and parameters than can be used and
manipulated. The Header file defines the constants and
the methods and the C++ file contains the actual
method code. Some examples of the variability
provided by the methods include playing 1 or 2 sine
waves, setting a duration or not, and changing the
output pins of the Arduino.

Figure 10: Software block diagram of the Arduino code showing
the user input and error handling.

The values for outputting the sine wave are
computed in real-time by the C++ code. The sine wave
has the form A*sin(omega*sampling frequency). Then
each value is created using filter coefficients and 3
registers to compute and shift the values. This allows
each value of the sine wave to be computed and written
in real time. These algorithms are based on the source
code algorithms as well. This part of the code exists
behind the scenes and is likely unknown to the user.
The full code files for the C++/Header files can be
found in APPENDIX IV and APPENDIX V.
 One key feature that had to be changed from
the source code was stopping the sine waves. The
source code had a stopTone() function that was
supposed to stop the sine wave, but it did not work
correctly since the code would get stuck in a loop in the
compute sine wave functions. The team implemented a
counter in order to call stopTone() after the correct
number of iterations. The code would update and print
the next value of the sine value until it reached the
delayCount, and this count equaled the stimulus
duration / sampling frequency. Therefore, the
stopTone() would correctly get called from the compute
methods and the sine waves would stop at the correct
times.

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 6

V. Testing
The testing was split into two parts: bench

testing and animal testing. Bench testing verifies that
the code worked as intended and the vibration stimulus
was applied at the correct time to the correct limbs.
Each motor should be driven at the programmed
frequency regardless of the frequency of the other
motor.

A. Bench Testing
 The main part of our testing was verifying that
the transducers were operating at the correct frequency
and amplitude. This is critical since the sine waves are
created from the Arduino using the code the team
wrote. This verification consists of frequency testing at
two different points. Both the left and right motors
were tested simultaneously since they are produced by
different DAC ports and they will be used together in
real applications.
 The first step in the testing was sending the
output from the Arduino directly into the oscilloscope.
This was done to analyze the output waveform and
verify the frequency of the sine wave. Plots of voltage
versus time were created on the oscilloscope, and the y-
axis cursors were be set to calculate the frequency of
the signal. 3 data points were taken at each 150, 200,
250, 300, and 350 Hz, and the mean and standard
deviations were calculated. Then, the percent error
between the programmed frequency and the mean
frequency was computed. This process was intended to
eliminate random outliers.

Then, the team verified that the motors were
operating at the correct frequency. This step involved
using an accelerometer to measure the mechanical
vibrations that can be observed on the oscilloscope.
This step was again done for the 5 frequencies
mentioned above, and the mean and standard deviation
were calculated. Then, the percent error between the
programmed frequency and the mean frequency was
computed. The team goal was to verify that the
vibration frequencies are within +/- 0.5 Hz of the target
frequency.

Lastly, the team used the same accelerometer
to try and measure any noise from the vibration source
on other parts of the cage. The accelerometer was
placed on other parts of the cage while the motors were
on, and the corresponding electrical signal was sent to
the oscilloscope for analysis, concluding our testing of
the functionality of the device.

B. Animal Testing

After the functionality of the device is verified,
the team wants to test the device with live rats. Before

any testing is conducted, the rats will be trained to rear
with their hind limbs on the vibrating platform and
respond on the left or right side of the device depending
on which side received the stronger stimulation. Once
trained, healthy rats that have not received the electrode
stimulation will be tested with the device to evaluate
their response and sensitivity. Next, those same rats
will have their sciatic nerve deafferented and receive
the electrode therapy. Finally, those rats will receive
the same testing and their responses will be recorded.
This data can then be compared to that of the healthy
rats in order to determine the success of the electrode
device. The exact animal testing protocols will need to
be discussed with the client in the future.

VI. Results
A. Bench Testing

The bench testing produced both qualitative
and quantitative results. The qualitative results that the
team found were that once the correct specifications
have been input by the user, there is no time delay in
application of the stimulus by the transducers. Also, it
was verified that the stimulus only lasted for the
specified amount of time. The team also verified that
the output in the oscilloscope had the correct sine wave
waveform. Then, the team used quantitative data from
the oscilloscope to evaluate the output frequency of the
surface transducers.
 The data for all trials related to frequency
testing can be found in APPENDIX I under Tables 1
and 2. The results of the bench testing are displayed
below in Figure 11. The data points shown in this
figure represent the mean percent error (the percent
error between the mean frequency and the intended
frequency value).

Figure 11: Comparison of the percent error of the input and output
frequencies for both the output from the Arduino and the output
from the accelerometer. 3 data points were taken every 50 Hz from
150-350 Hz for each trial and the means were plotted above.

 It can be seen in Figure 11 that the signal from
the Arduino Due (shown as the blue data points) had a

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 7

consistent percent error between 3.5-3.8%. The percent
error for frequency of the physical vibration begins
around 5% then returns to a value closer to the percent
error of the Arduino Due signal as the input frequency
increases. All the samples taken directly from the
Arduino had an amplitude around 2.2 V and those
taken from the oscilloscope had an amplitude around
680 mV. APPENDIX II contains some samples
images that were taking from the oscilloscope during
testing. The first figure shows the code running two
sine waves a different frequencies, the second shows
two sine wave running at the same frequency (used to
gather blue data points above), and the third shows the
output from the accelerometer (used to gather red data
points above).

Lastly, the team tried to measure any resulting
vibrations and/or noise in the rest of the enclosure from
the motors using the accelerometer. After placing the
accelerometer on different parts of the floor and walls,
no significant data was produced. The oscilloscope
output looked like a baseline measurement. This means
that either the vibrations are successfully being isolated
to each limb, or the low sensitivity and small output
voltages of the accelerometer could not capture the
small vibrational signals.

B. Animal Testing

The team did not get to perform animal testing
at this time, but this testing will also produce both
qualitative and quantitative results. First, the qualitative
results will be verifying that rats respond to the desired
stimulus in the correct way. Without this verification,
the data from rat testing will not be reliable.
 Next, the team will collect quantitative data.
We will collect a variety of data points and perform
statistical analysis to compare the rats before and after
their surgery. The primary result of interest will be a
stimulus-response histogram. This will compare the
percent of correct responses with the level of stimulus
provided. The histogram will not only depict how the
rats respond to the stimulus but also make it easy to
compare the healthy and postoperative rats’ behavior.

VII. Discussion
In this section, the result will be broken down

to confirm that the device functions properly as well as
address any limitations and shortcomings of the device.
The experimental data for the signal directly from the
Arduino showed a percent error that stayed within a
constant range of 3.5-3.8%. While the output
frequencies from the Arduino were consistent, they
were not quite as precise as the team would have liked.
Since the percent error is pretty consistent, the team

believes that this can possibly be corrected by tweaking
the algorithm code. It would take more testing to
determine if that would work, but there are many
parameters such as the amplitude, offset, and sampling
frequency that can be altered to observe the frequency
response.

The percent error of the accelerometer output at
150 Hz was roughly 5%, but the percent error at 350
Hz was 3.8%. This percent error at 350 Hz is much
closer to that of the Arduino signal, showing that the
percent error decreased as the frequency was increased.
There are two explanations for this change in percent
error. The first is that the surface transducer has a
worse frequency response at the beginning of the
frequency range, compared to that of the upper limit of
the frequency range. This means that the transducer is
being driven at too low of a frequency, and thus is not
able to translate that electronic signal to a physical
output. The second explanation is that the
accelerometer, not the surface transducer, is the
component that has the poor frequency response. This
would mean that the transducer is outputting the correct
physical vibration, but the accelerometer is not able to
detect that vibration accordingly.

After further examination, it is believed that the
surface transducer has a poor frequency response. This
was based off of the data sheets for both of these
components. The accelerometer has a corner frequency
of 50 Hz and a bandwidth of greater than 500 Hz. This
bandwidth range comfortably contains our frequency
range. The data sheet of the surface transducer also
indicates that the device has a passband beginning at
507 Hz, which is outside of the intended frequency
range.
 The team was not able to perform animal
testing during this design period. These results would
not have provided information about the functionality
of the device but rather its efficacy. Even if the device
functioned as intended, there is no guarantee that the
rats would respond in the predicted way. In addition, if
the results did not indicate significant differences in the
rats before and after surgery, then other options to
differentiate the stimulus would need to be considered.
For example, the frequency range or amplitude would
need to be changed moving forward.

VIII. Conclusion/Future Development

The team designed a somatosensory
stimulation device that can be used to verify the
efficacy of our client’s electrode interface for
peripheral nerve therapy. Current rat training
enclosures do not offer stimulation that can be isolated
to the individual hindlimbs. The device consists of an

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 8

enclosure that is able to apply a graded stimulus to the
two hindlimbs individually using an Arduino
microcontroller. The final prototype includes clear
plexiglass walls and floors, and the stimulus is provided
by two platforms that vibrate via speaker actuators
using the Arduino. A rearing rat will stand on these
platforms during training and testing. The motors are
secured using a vibration damping foam.

The team’s bench testing demonstrated that the
device operates correctly. It was confirmed that the
Arduino inputs a sine wave at a frequency within 3.5-
3.8% of the mechanical vibrations and the platform also
operate at a frequency within 3.8-5% error of the
desired frequency. By adjusting the sine wave
algorithms and/or shifting the frequency range, the
team believes the devices could produce even more
precise signals. The team also wants to perform animal
testing to demonstrate that the device can be used for
verifying the efficacy of the electrodes. By creating this
device to evaluate the effectiveness of the electrode
therapy, the research can continue to move forward and
lead to vast improvements for nerve regeneration and
phantom limb pain in humans.

Acknowledgements

 The authors would like to thank our client Dr.
Aaron Dingle, our advisor Professor Mitch Tyler, Dr.
Aaron Suminski, and Dr. Amit Nimunkar for their help
and guidance.

References
[1] "Limb Prosthetics Services and Devices", Semantic

Scholar, 2017. [Online]. Available:
https://pdfs.semanticscholar.org/c3ae/f3563844e2e2835
411fcbc2b0fe3091ac30b.pdf. [Accessed: 20- Sep- 2017].

[2] "Neuropathic Pain Management", WebMD, 2017.
[Online]. Available: https://www.webmd.com/pain-
management/guide/neuropathic-pain#1. [Accessed: 07-
Oct- 2017].

[3] B. Subedi and G. Grossberg, "Phantom Limb Pain:
Mechanisms and Treatment Approaches", Pain
Research and Treatment, vol. 2011, pp. 1-8, 2011.

[4] C. Wetzel, S. Pifferi, C. Picci, C. Gök, D. Hoffmann, K.
Bali, A. Lampe, L. Lapatsina, R. Fleischer, E. Smith, V.
Bégay, M. Moroni, L. Estebanez, J. Kühnemund, J.
Walcher, E. Specker, M. Neuenschwander, J. von Kries,
V. Haucke, R. Kuner, J. Poulet, J. Schmoranzer, K.
Poole and G. Lewin, "Small-molecule inhibition of
STOML3 oligomerization reverses pathological
mechanical hypersensitivity", Nature Neuroscience, vol.
20, no. 2, pp. 209-218, 2016.

[5] R. TEST CAGE - RAT - INCLUDES INFUSION AND
STIMULATION LID, "TEST CAGE - RAT -
INCLUDES INFUSION AND STIMULATION LID,
REQUIRES FLOOR PURCHASED SEPARATELY",
2017. [Online]. Available:

http://www.coulbourn.com/product_p/h10-11r-tc.htm.
[Accessed: 26- Sep- 2017].

[6] "Automatic Rat Behavior Recognition", Noldus.com,
2017. [Online]. Available:
http://www.noldus.com/EthoVision-XT/Rat-Behavior-
Recognition. [Accessed: 08- Oct- 2017].

[7] A. Basbaum, The Senses: A Comprehensive Reference.
Oxford, U.K.: Elsevier, 2008, pp. 33-38.

[8] K. Rabey, Y. Li, J. Norton, R. Reynolds and D. Schmitt,
"Vibrating Frequency Thresholds in Mice and Rats:
Implications for the Effects of Vibrations on Animal
Health", Annals of Biomedical Engineering, vol. 43, no.
8, pp. 1957-1964, 2014.

[9] “Arduino Due Documentation.” Arduino. 2018. [Online].
Available: https://store.arduino.cc/usa/arduino-due

[9] C. Masenas. “Sinewave Library for the Arduino Due”.
GitHub. 6 Nov 2015. [Online]. Available:
https://github.com/cmasenas/SineWaveDue

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 9

APPENDIX I
Table 1: Experimental data for frequency testing of the Arduino
Due signal

Table 2: Experimental data for frequency testing of the physical
output from the transducers

APPENDIX II

Figure 1: This shows the oscilloscope output with one DAC port
outputting 150 Hz (yellow) and the other outputting 250 Hz (green).

Figure 2: This shows the oscilloscope output with both DAC ports
outputting at 300 Hz.

Figure 3: This shows the oscilloscope output from the
accelerometer when driving the motor at 200 Hz.

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 10

APPENDIX III

Arduino Code
/*
 SineWave.ino
 UW Madison BME Design: Team Hindlimb Stim.
 Written by Timothy Lieb- April 25, 2018.
*/

#include <DueTimer.h>
#include <SineWave.h>
int lowerFreqBound = 150;
int upperFreqBound = 350;
int leftFreq = 0;
int rightFreq = 0;
bool setDelay = false;
bool globalDelay = false;
int delayTime = 0;

void setup() {
 analogReadResolution(12);
 analogWriteResolution(12);
 Serial.begin(9600);
 while (!Serial);
 Serial.println("<Arduino is ready>");
}

void loop() {
 if (setDelay == false) {
 createDelay();
 }
 setLeftFreq();
 setRightFreq();
 applyStimulus();
}

void createDelay() {
 bool isSet = false;
 char answer;
 Serial.println("Would you like to set a constant stimulus duration (y/n): ");
 while (!isSet) {
 if (Serial.available() > 0) {
 answer = Serial.read();
 isSet = true;
 }
 }
 if (answer == 'y') {
 isSet = false;
 Serial.println("Enter constant stimulus duration: ");
 while (!isSet) {
 if (Serial.available() > 0) {
 delayTime = Serial.parseInt();
 globalDelay = true;
 Serial.print("A constant stimulus duration of ");
 Serial.print(delayTime);
 Serial.println(" seconds has been set.");
 isSet = true;
 }
 }
 }
 else {
 Serial.println("The duration will be set for each stimulus individually.");
 }
 setDelay = true;
}

void setLeftFreq() {
 bool isSet = false;
 int input = 0;
 Serial.println("Enter left frequency: ");
 while (!isSet) {
 if (Serial.available() > 0) {
 input = Serial.parseInt();
 if (lowerFreqBound <= input && input <= upperFreqBound) {
 leftFreq = input;
 Serial.print("Left frequency set to ");
 Serial.print(input);
 Serial.println(" Hz.");
 isSet = true;

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 11

 }
 else if (input == 0) {
 //left motor off
 leftFreq = 0;
 Serial.println("Left frequency set to 0 Hz.");
 isSet = true;
 }
 else {
 Serial.print("Frequency must be between ");
 Serial.print(lowerFreqBound);
 Serial.print(" Hz and ");
 Serial.print(upperFreqBound);
 Serial.println(" Hz.");
 Serial.println("Enter left frequency: ");
 }
 }
 }
}

void setRightFreq() {
 bool isSet = false;
 int input = 0;
 Serial.println("Enter right frequency: ");
 while (!isSet) {
 if (Serial.available() > 0) {
 input = Serial.parseInt();
 if (lowerFreqBound <= input && input <= upperFreqBound) {
 rightFreq = input;
 Serial.print("Right frequency set to ");
 Serial.print(input);
 Serial.println(" Hz.");
 isSet = true;
 }
 else if (input == 0) {
 //right motor off
 rightFreq = 0;
 Serial.println("Right frequency set to 0 Hz.");
 isSet = true;
 }
 else {
 Serial.print("Frequency must be between ");
 Serial.print(lowerFreqBound);
 Serial.print(" Hz and ");
 Serial.print(upperFreqBound);
 Serial.println(" Hz.");
 Serial.println("Enter right frequency: ");
 }
 }
 }
}

void applyStimulus() {
 if (globalDelay == false) {
 bool isSet = false;
 Serial.println("Enter the stimulus duration: ");
 while (!isSet) {
 if (Serial.available() > 0) {
 delayTime = Serial.parseInt();
 Serial.print("A stimulus duration of ");
 Serial.print(delayTime);
 Serial.println(" seconds has been set.");
 isSet = true;
 }
 }
 }

 bool isApplied = false;
 Serial.println("Press any key to apply stimulus: ");
 while (!isApplied) {
 if (Serial.available() > 0) {
 char clearBuffer = Serial.read();
 if (leftFreq == 0 && rightFreq == 0) {
 Serial.println("No stimulus applied, both frequencies set to 0.");
 isApplied = true;
 }
 else if (rightFreq == 0) {
 sw.setPin(0); //DAC0 for left motor
 sw.setSamplingFreq(100/12);
 sw.playTone(leftFreq, delayTime);
 isApplied = true;
 resetParams();
 }

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 12

 else if (leftFreq == 0) {
 sw.setPin(1); //DAC1 for right motor
 sw.setSamplingFreq(100/12);
 sw.playTone(rightFreq, delayTime);
 isApplied = true;
 resetParams();
 }
 else {
 sw.setSamplingFreq(100/6);
 sw.playTone2(leftFreq, rightFreq, delayTime);
 isApplied = true;
 resetParams();
 }
 }
 }
}

void resetParams() {
 Serial.println("Stimulus applied.");
 rightFreq = 0;
 leftFreq = 0;
}

APPENDIX IV
Header Code

/*
 * SineWave.h
 * UW Madison BME Design: Team Hindlimb Stim.
 * Updated by Timothy Lieb- April 25, 2018.
 * Sine wave algorithms by C. Masenas, November 8, 2015.
 *
 */

#ifndef SineWave_h
#define SineWave_h

// use the DueTimer library for timing
#include <DueTimer.h>
// DAC0 for left motor
#define OUTPIN0 DAC0
// DAC1 for right motor
#define OUTPIN1 DAC1

class SineWave{
 private:
 const float pi = 3.14159;
 // amplitude of sine signal
 const float A = 2000;
 // offset for sine wave
 const float D = 2000;
 // set default output pin
 int pin = OUTPIN0;
 int count = 0;
 int delayCount = 0;
 // set default sampling frequency in microseconds
 float SF = (100/6)/1000000.0;
 // c1 = first filter coefficient, c1b used for second tone
 float ca, cb;
 // filter registers, updated from interrupt so must be volatile
 volatile float a[3], b[3];

 public:
 // changes sampling frequency
 void setSamplingFreq(float interval);
 // changes the output to DAC0 or DAC1
 void setPin(int pinNew);
 // play one tone for a specified time
 void playTone(float freq, int duration);
 // play one tone
 void playTone(float freq);
 // play two tones for a specified time
 void playTone2(float freq1, float freq2, int duration);
 // play two tones
 void playTone2(float freq1, float freq2);
 // stop playing a tone
 void stopTone(void);
 // computes samples for one tone
 void compute(void);
 // computes samples for two tones
 void compute2(void);
};

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 13

// sw is instantiated in cpp file
extern SineWave sw;
#endif

APPENDIX V
C++ Code

/*
 * SineWave.cpp
 * UW Madison BME Design: Team Hindlimb Stim.
 * Updated by Timothy Lieb- April 25, 2018.
 * Sine wave algorithms by C. Masenas, November 8, 2015.
 *
 */

#include <SineWave.h>
// uses DueTimer library for interrupt timing
#include <DueTimer.h>

extern "C" {
 void external_compute(void);
 void external_compute2(void);
}
void SineWave::setSamplingFreq(float T){
 SF = T/1000000.0 ; //change the sampling frequency
}

void SineWave::setPin(int pinNew){
 if (pinNew == 0) {
 pin = OUTPIN0;
 }
 else {
 pin = OUTPIN1;
 }
}

void SineWave::playTone(float freq){
 // angular frequency in radians/second
 float omega = 2.0*pi*freq;
 // (omega * sampling frequency) squared
 float wTsq = SF*SF*omega*omega;
 // coefficient of first filter term
 ca = (8.0 - 2.0*wTsq)/(4.0+wTsq);
 // initialize filter coefficients
 a[0] = 0.0;
 a[1] = A*sin(omega*SF);
 a[2] = 0.0;

 Timer1.attachInterrupt(external_compute);
 Timer1.start(SF*1000000);
}

void SineWave::playTone2(float freq, float freq2){
 float omega = 2.0*pi*freq;
 float omega2 = 2.0*pi*freq2;
 float wTsq = SF*SF*omega*omega;
 float wTsq2 = SF*SF*omega2*omega2;
 ca = (8.0 - 2.0*wTsq)/(4.0+wTsq);
 cb = (8.0 - 2.0*wTsq2)/(4.0+wTsq2);
 a[0] = 0.0;
 a[1] = A*sin(omega*SF);
 a[2] = 0.0;
 b[0] = 0.0;
 b[1] = A*sin(omega2*SF);
 b[2] = 0.0;

 Timer1.attachInterrupt(external_compute2);
 Timer1.start(SF*1000000);
}

void SineWave::playTone(float freq, int duration){

 delayCount = duration / (SF);
 playTone(freq);

 //delay(duration);

 //stopTone();
 //Timer1.stop();

IEEE REVIEWS IN BIOMEDICAL ENGINEERING 14

 //Timer1.detachInterrupt();
}

void SineWave::playTone2(float freq, float freq2, int duration){

 delayCount = duration / (SF*2);
 playTone2(freq, freq2);

 //delay(duration);

 //stopTone();
 //Timer1.stop();
 //Timer1.detachInterrupt();
}

void SineWave::stopTone(void){

 Timer1.stop();

 Timer1.detachInterrupt();
}

void SineWave::compute(void){
 // compute the sample
 a[2] = ca*a[1] - a[0];
 // shift the registers in preparation for the next cycle
 a[0] = a[1] ;
 a[1] = a[2] ;
 // write to DAC
 analogWrite(pin, a[2]+D);

 //Added because calling stopTone() was not working correctly
 if (count != delayCount){
 count ++;
 }
 else {
 sw.stopTone();
 }
}

void SineWave::compute2(void){
 a[2] = ca*a[1] - a[0];
 a[0] = a[1] ;
 a[1] = a[2] ;
 b[2] = cb*b[1] - b[0];
 b[0] = b[1] ;
 b[1] = b[2] ;

 sw.setPin(1);
 analogWrite(pin, a[2]+D);

 sw.setPin(0);
 analogWrite(pin, b[2]+D);

 //Added because calling stopTone() was not working correctly
 if (count != delayCount){
 if (count != delayCount){
 count ++;
 }
 else {
 sw.stopTone();
 }
}

// instantiate the SineWave sw instance here
SineWave sw;

void external_compute(void){
 sw.compute();
}

void external_compute2(void){
 sw.compute2();
}

