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Abstract -- An electrode device has been 
designed to address the problem of phantom limb 
pain, a neuropathic disorder caused by nerve 
damage during limb amputation. Before this device 
can be tested in humans, it must prove successful 
in animal models. In order to generate functional 
outcome data from rats, a healthy rat is trained to 
conditionally respond to a specific somatosensory 
stimulus. Then, the peripheral nerve is surgically 
deafferented and the electrode implanted. The 
device can then be used to apply the same 
stimulus and the rat’s response can be measured. 
Here we report the development of a device to 
produce the somatosensory stimulation necessary 
to train the rats.  It consists of a testing enclosure 
for the rat and motors to facilitate the stimulation 
that are controlled by a microcontroller. The final 
design features a plexiglass enclosure with two 
platforms that vibrate via speaker actuator motors 
underneath. The motors are connected using a 
vibration damping foam to ensure isolation. The 
Arduino Due with corresponding code produces 
sine waves to drive the motors, and the frequencies 
are set between 150-350 Hz by the user via the I/O 
console. Testing has shown that the current device 
is able to successfully output vibrational 
frequencies within 3.8% error of those set by the 
user. Using this device for animal testing will be 
crucial for determining the efficacy of the 
electrodes and completing the FDA requirements. 
 
 Index Terms -- peripheral nerves, nerve 
damage, electrode therapy, nerve regeneration, 
somatosensory stimulation, animal testing 
 

I. Introduction 
 There are 185,000 amputee surgeries every 
year in the United States. In these surgeries, patients 
receive amputations of one or more limbs as well as 
other body parts. [1] All of these amputations can lead to 
phantom pain, however amputation of limbs is cited as 
the most commonly reported source of this pain. 
Phantom limb pain (PLP) is a neuropathic shooting or 
burning pain that is caused by the misfiring of the 
nerves damaged during amputation. [2] Some 42.2-

78.8% of amputees suffer from PLP either immediately 
following surgery or years later. Treatments consist of 
both pharmacological and non-pharmacological 
approaches, but due to the lack of knowledge in the 
mechanism behind the pain, these treatments are often 
ineffective.[3] 

 A proposed solution to PLP, which is currently 
being investigated, is an electronic interface for 
peripheral nerves. This interface has electrodes that 
could be implanted around the nerve(s) deafferented 
during amputation and prevent phantom limb pain, 
potentially serving as a means to restore the amputee’s 
sense of touch through tactile sensors embedded in a 
prosthetic limb. For the most part, phantom limb pain is 
a result of the damaged nerves near amputated body 
parts misfiring, transmitting pain through the nervous 
system and causing our brain to register it as pain 
coming from or near the missing body part. This 
electrode device could potentially reduce the frequency 
of or otherwise mitigate the effects of this misfiring, 
ultimately serving to reduce or relieve phantom limb 
pain in the patient. 

The device is in the animal testing stage of the 
FDA approval process, Phase-1, and a device that 
allows for proof of concept testing in rat models is 
needed. Functionality testing for this type of device in 
humans is simple since the researcher can ask the 
subject if he or she felt a sensation in their amputated 
limb. In rats, however, a nonverbal method is needed in 
order to determine the device’s functionality. 
 A common method for obtaining functionality 
data from rats is to collect data and create an “S” 
shaped histogram of percent correct responses versus 
stimulation amplitude (Figure 1). This stimulus-
response (SR) data can be collected by training a 
healthy rat to respond in a specific way to a certain 
stimulus. For example, a rat can be trained to poke its 
nose in a hole on its right side after receiving a 
vibrational stimulus on its right foot. Ideally, using a 
large range of vibrational frequencies should then 
produce an “S” shaped curve of data points. In order to 
test this device, the SR curves of healthy rats and rats 
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with that have the device implanted will be compared. 
Success of this device will be demonstrated by 
observing similar curves between the normal rat and 
the surgically altered rat. The similarity indicates that 
stimulation of the deafferented nerve after electrode 
therapy feels that same as the stimulus on the normal 
limb of the rat. 
 

 
Figure 1.  An example of an “S” histogram of percent correct 
response versus stimulation amplitude in trained rats. (a) The 
experimental setup for obtaining the data 1). The rat receives a 
tactile pulse stimulus. 2) Upon detection of the stimulus, the rat 
presses the target button. 3) The rat is rewarded with water for 
correctly responding to the stimulus. No reward is given if the 
response is incorrect. (b) The resulting curves of percent of times 
the target was pressed vs the stimulus amplitude in this experiment 
under three different conditions. [4] 

 
II. Existing Technology 

Current rat training enclosures on the market 
include a rat testing cage from Coulbourn (Figure 2). 
These cages lack floor or wall panels, but accommodate 
additional training modules. These training modules 
include a shocking floor and nose poke holes with optic 
and olfactory stimuli.[5] While a shocking floor could 
provide stimulus to both of a rat’s hindlimbs, it does 
not allow for isolation of the stimulus onto a single 
limb. This detail is critical for testing the efficacy of the 
new electrode device. 

 
Figure 2: Rat test cage from Coulbourn. This enclosure 
accommodates different floors and wall panels for different types of 
rat training. [5] 

In order to perform rat testing that will prove 
the efficacy of the electrode, a device is needed that can 
stimulate a single rat hindlimb at a range of frequencies 
from 150-350 Hz. This stimulus must not cause any 
residual artifacts that may lead the rat to give the 
correct response without proper functioning of the 
electrode device. For example, the stimulus must be 
completely isolated to one hindlimb so that vibration 
cannot be felt in the opposite, healthy leg at the same 
time. There must also not be any noise differentiation 
between stimulus levels so that the rat cannot form 
associations and respond based on auditory stimulation. 
  

 
Figure 3: The rearing rat receives its reward by poking its nose 
through one of the three holes in the cage wall. [6] 

 
In addition to the part of the device that will 

provide the stimulation, the device must also include an 
enclosure in which the rats can be trained. The 
enclosure must allow the user to view the rat during 
testing. It should restrict non-experimental movement, 
but not limit the rat’s ability to respond to the stimulus. 
In order to do this, the cage should include three holes 
at nose-height of a rearing rat so the rat can poke its 
nose in the appropriate hole and receive its reward 
(Figure 3). There are not any other devices on the 
market that combine these design elements in a 
satisfactory way, thus, the creation of a new device is 
required. 

 
III. Background 

In order to elicit a response from the rat, the 
somatosensory system must transmit the stimulus from 
the peripheral nervous system neurons to the brain, 
where a response action can be determined. The 
somatosensory system has different receptor cells for 
each modality of stimulation. Both humans and rats 
have mechanoreceptors, thermoreceptors, 
proprioceptors, pain receptors, and chemoreceptors. 
Mechanoreceptors will be the focus of this device as 
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low mechanical vibration is used as the stimulus. In the 
skin, humans and rats have three main cell types that 
sense vibration (Figure 4). Merkel cells are closest to 
the surface of the skin and sense low frequency 
vibrations (5-15 Hz). Slightly deeper in the skin are 
tactile corpuscles, which sense frequencies of 10-50 
Hz. [7] 

 

 
Figure 4: Mechanoreceptors in the skin. Merkel cells and tactile 
corpuscles sense low frequency vibrations on the surface of the skin 
while lamellar corpuscles sense higher frequency vibrations and 
they transfer the information to the brain via the somatosensory 
system.[7] Red boxes added by authors to emphasize key cells. 
 

Lamellar corpuscles can sense higher 
frequencies, with optimal sensing at 250 Hz. The 
Lamellar corpuscles will be the main target for the 
vibrations in this project. These cells often cannot be 
targeted without propagating the vibration throughout 
the rat’s body. Due to their anatomy and physiology, rat 
bodies tend to attenuate vibrational frequencies of 31-
50 Hz.[8] For this project, only the hindlimb is 
stimulated with low amplitude vibrations, and so 
vibration of the rat’s body should not be an issue. 
Training with stimulation of other body parts may 
confound the results of the efficacy of the electrode. 
 The rats that will be used in this experiment are 
adult Lewis breed that range in size from 250-350 g. 
These rats are commonly used as animal models due to 
their physiological similarities to humans as well as 
their mild temperament. 

 
 
 
 
 
 

IV. Fabrication/Development 
A. Materials and Methods 

Plexiglass was selected for the enclosure to 
allow for viewing of the rats during testing. The six 
pieces of the cage were laser cut with interlocking tabs 
and put together with acrylic glue. The enclosure 
measures 0.25 x 0.28 x 0.3 m (10 x 11 x 12 in). The 
floor piece included two cut outs for the actuators, 
which provided the vibrations with 0.08 m (3 in) left 
underneath it to hold the electronics. The highly 
damping foam is used for the connection between the 
cage and the actuator to isolate the vibrations and 
prevent propagation throughout the cage. 3D renderings 
of the enclosure are depicted in Figure 5 and Figure 6. 

The electrical components include surface 
transducers, an Arduino Due microcontroller, are wires. 
The transducers have the actuator surface replaced with 
a plexiglass platform that protrudes through the floor of 
the enclosure. The microcontroller is responsible for 
providing the output waveform at the desired 
frequency.  

Vibration-damping foam was molded into two 
cylinders with 2 in diameter and 3 in height. The 
vibrational motors were pressed into the top of the 
cylinders and set out to air dry for 24 hours. These 
foam cylinders with motors were then placed on a piece 
of base plexiglass directly under the rectangular cut-
outs in the floor of the cage. 
 

 
Figure 5: 3D rendering of the rodent cage using SolidWorks 
consisting of 6 pieces with interlocking tabs.  
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Figure 6: Dimensioned drawing of the rodent cage with 
measurements in inches. 

 
B. Final Prototype 

The final prototype begins with two surface 
transducers. The original top of the transducer has been 
replaced with a platform that fits into rectangular 
cutouts in the floor of the enclosure. The modified 
surface transducer can be seen in Figure 7. Each of 
these transducers are placed in a pillar of damping foam 
to increase the isolation of the resulting vibration 

 

  
Figure 7: Surface transducer with attached platform 
 

The system diagram (Figure 8) shows the 
circuit/electronic connections. First, the system is 
controlled using an Arduino Due microcontroller 
(Figure 9) as well as the corresponding code. The Due 
features two output ports with 12-bits resolution and 
digital to analog conversion (DAC) built-in. These 
specs will allow the Arduino to create a precise sine 
wave. The sine wave will have a max 2.75 V peak-to-
peak signal, as limited by the microcontroller. A 
frequency range of 150-350 Hz will be used for the sine 
wave to provide a graded stimulus. 

 
 
 

Figure 8: System diagram of electronics 
 

 
Figure 9: Arduino Due microcontroller showing the two USB ports 
for communication. [9] 

 
The frequency range of the sine waves was 

determined based on the surface transducer’s ability to 
produce certain vibration amplitudes at various 
frequencies. At very low frequencies, the transducer 
produced very low amplitude vibrations, which could 
not be felt when the motors were driven directly by the 
Arduino. However, at higher frequencies, greater than 
150 Hz, the vibrational amplitude was sufficient 
enough to be felt without amplification. In addition, the 
surface transducers behave more linearly at higher 
frequencies, and this provides the device with more 
consistent vibrations.  

Therefore, the motors were able to be driven by 
the DAC ports of the Arduino directly. Even though the 
Arduino actually only produced a 2.2 V pk-pk and a 
43mA signal, the surface transducers were still able to 
provide sufficient amplitude. Driving the motors from 
the Arduino directly allowed the team to greatly 
simplify the electronics design by eliminating the need 
for an amplification system as well as an external 
power source. Simplifying the design helps to eliminate 
unnecessary sources of error.  

The stimulus is applied as desired using a 
laptop. The user interface also allows for real-time 
frequency variation. The user can set the operating 
frequencies for both limbs, set the stimulus duration 
and then apply the stimulus. This interface allows for 
easy manipulation of the device while requiring no 
knowledge of the electronics or code. More specifics 
code and user interface follows in the software section. 
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C. Software 
 The software for this project is split up into 3 
different files: a .ino Arduino file, a .cpp C++ file, and 
a .h Header file. The Arduino file contains the code for 
the user interface as well as error handling and the 
C++/Header files contain the code for creating and 
writing the sine waves.  
 The Arduino file contains code entirely written 
by this team. The user interface in implemented using 
the serial monitor console, which is built into Arduino. 
The code communicates with the console by using 
serial communication along with a variety of serial 
commands built into Arduino software. The team 
determined that optimal communication/function of the 
code occurred when the analogReadResolution() and 
the analogWriteResolution() where set to 12 and the 
Serial.begin() was set to 9600, which is the baud rate.  
 Another important consideration for the serial 
communication was which USB port on the Arduino 
was best to use. The Arduino Due contains a Native 
USB port and a Programming port (both ports are 
labeled in Figure 9). The Native port allows for higher 
speed serial communication but the Programming port 
is better for uploading code to the Arduino. Unlike 
other Arduinos, the flash memory on the Arduino Due 
must be erased before new code can be programmed to 
the board. The Programming port does what is known 
as a “hard erase” which is more reliable than the “soft 
erase” of the Native port. Since the Programming port 
also provides decent serials speeds (up to 115200 bits 
per second), the team decided to use the Programming 
port for the device’s communication.  
 The full Arduino code can be found in 
APPENDIX III, but the software block diagram in 
Figure 10 provides a brief overview of the code. 
Essentially, the code needs the left frequency, the right 
frequency, and the stimulus duration from the user. The 
stimulus duration can be set as one global stimulus that 
is used for each iteration, or the duration can be set for 
each stimulus individually. Once all three parameters 
are set with valid inputs, the code can apply the 
stimulus by calling the functions outlined in the 
C++/Header code. 
 The C++/Header files were based on free 
source code found online which was then altered to fit 
the needs of this project (code found at source [10]). 
These files create a SineWave object that contains 
different methods and parameters than can be used and 
manipulated. The Header file defines the constants and 
the methods and the C++ file contains the actual 
method code. Some examples of the variability 
provided by the methods include playing 1 or 2 sine 
waves, setting a duration or not, and changing the 
output pins of the Arduino. 

Figure 10: Software block diagram of the Arduino code showing 
the user input and error handling. 
 

The values for outputting the sine wave are 
computed in real-time by the C++ code. The sine wave 
has the form A*sin(omega*sampling frequency). Then 
each value is created using filter coefficients and 3 
registers to compute and shift the values. This allows 
each value of the sine wave to be computed and written 
in real time. These algorithms are based on the source 
code algorithms as well. This part of the code exists 
behind the scenes and is likely unknown to the user. 
The full code files for the C++/Header files can be 
found in APPENDIX IV and APPENDIX V. 
 One key feature that had to be changed from 
the source code was stopping the sine waves. The 
source code had a stopTone() function that was 
supposed to stop the sine wave, but it did not work 
correctly since the code would get stuck in a loop in the 
compute sine wave functions. The team implemented a 
counter in order to call stopTone() after the correct 
number of iterations. The code would update and print 
the next value of the sine value until it reached the 
delayCount, and this count equaled the stimulus 
duration / sampling frequency. Therefore, the 
stopTone() would correctly get called from the compute 
methods and the sine waves would stop at the correct 
times. 
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V. Testing 
The testing was split into two parts: bench 

testing and animal testing. Bench testing verifies that 
the code worked as intended and the vibration stimulus 
was applied at the correct time to the correct limbs. 
Each motor should be driven at the programmed 
frequency regardless of the frequency of the other 
motor.   
 
A. Bench Testing 
 The main part of our testing was verifying that 
the transducers were operating at the correct frequency 
and amplitude. This is critical since the sine waves are 
created from the Arduino using the code the team 
wrote. This verification consists of frequency testing at 
two different points. Both the left and right motors 
were tested simultaneously since they are produced by 
different DAC ports and they will be used together in 
real applications.  
 The first step in the testing was sending the 
output from the Arduino directly into the oscilloscope. 
This was done to analyze the output waveform and 
verify the frequency of the sine wave. Plots of voltage 
versus time were created on the oscilloscope, and the y-
axis cursors were be set to calculate the frequency of 
the signal. 3 data points were taken at each 150, 200, 
250, 300, and 350 Hz, and the mean and standard 
deviations were calculated. Then, the percent error 
between the programmed frequency and the mean 
frequency was computed. This process was intended to 
eliminate random outliers. 

Then, the team verified that the motors were 
operating at the correct frequency. This step involved 
using an accelerometer to measure the mechanical 
vibrations that can be observed on the oscilloscope. 
This step was again done for the 5 frequencies 
mentioned above, and the mean and standard deviation 
were calculated. Then, the percent error between the 
programmed frequency and the mean frequency was 
computed. The team goal was to verify that the 
vibration frequencies are within +/- 0.5 Hz of the target 
frequency.  

Lastly, the team used the same accelerometer 
to try and measure any noise from the vibration source 
on other parts of the cage. The accelerometer was 
placed on other parts of the cage while the motors were 
on, and the corresponding electrical signal was sent to 
the oscilloscope for analysis, concluding our testing of 
the functionality of the device. 
 
B. Animal Testing 

After the functionality of the device is verified, 
the team wants to test the device with live rats. Before 

any testing is conducted, the rats will be trained to rear 
with their hind limbs on the vibrating platform and 
respond on the left or right side of the device depending 
on which side received the stronger stimulation. Once 
trained, healthy rats that have not received the electrode 
stimulation will be tested with the device to evaluate 
their response and sensitivity. Next, those same rats 
will have their sciatic nerve deafferented and receive 
the electrode therapy. Finally, those rats will receive 
the same testing and their responses will be recorded. 
This data can then be compared to that of the healthy 
rats in order to determine the success of the electrode 
device. The exact animal testing protocols will need to 
be discussed with the client in the future. 
 

VI. Results 
A. Bench Testing 

The bench testing produced both qualitative 
and quantitative results. The qualitative results that the 
team found were that once the correct specifications 
have been input by the user, there is no time delay in 
application of the stimulus by the transducers. Also, it 
was verified that the stimulus only lasted for the 
specified amount of time. The team also verified that 
the output in the oscilloscope had the correct sine wave 
waveform. Then, the team used quantitative data from 
the oscilloscope to evaluate the output frequency of the 
surface transducers. 
 The data for all trials related to frequency 
testing can be found in APPENDIX I under Tables 1 
and 2. The results of the bench testing are displayed 
below in Figure 11. The data points shown in this 
figure represent the mean percent error (the percent 
error between the mean frequency and the intended 
frequency value).  
 

 
Figure 11: Comparison of the percent error of the input and output 
frequencies for both the output from the Arduino and the output 
from the accelerometer. 3 data points were taken every 50 Hz from 
150-350 Hz for each trial and the means were plotted above. 
 
 
 It can be seen in Figure 11 that the signal from 
the Arduino Due (shown as the blue data points) had a 
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consistent percent error between 3.5-3.8%. The percent 
error for frequency of the physical vibration begins 
around 5% then returns to a value closer to the percent 
error of the Arduino Due signal as the input frequency 
increases. All the samples taken directly from the 
Arduino had an amplitude around 2.2 V and those 
taken from the oscilloscope had an amplitude around 
680 mV. APPENDIX II contains some samples 
images that were taking from the oscilloscope during 
testing. The first figure shows the code running two 
sine waves a different frequencies, the second shows 
two sine wave running at the same frequency (used to 
gather blue data points above), and the third shows the 
output from the accelerometer (used to gather red data 
points above). 

Lastly, the team tried to measure any resulting 
vibrations and/or noise in the rest of the enclosure from 
the motors using the accelerometer. After placing the 
accelerometer on different parts of the floor and walls, 
no significant data was produced. The oscilloscope 
output looked like a baseline measurement. This means 
that either the vibrations are successfully being isolated 
to each limb, or the low sensitivity and small output 
voltages of the accelerometer could not capture the 
small vibrational signals.   
 
B. Animal Testing 

The team did not get to perform animal testing 
at this time, but this testing will also produce both 
qualitative and quantitative results. First, the qualitative 
results will be verifying that rats respond to the desired 
stimulus in the correct way. Without this verification, 
the data from rat testing will not be reliable. 
 Next, the team will collect quantitative data. 
We will collect a variety of data points and perform 
statistical analysis to compare the rats before and after 
their surgery. The primary result of interest will be a 
stimulus-response histogram. This will compare the 
percent of correct responses with the level of stimulus 
provided. The histogram will not only depict how the 
rats respond to the stimulus but also make it easy to 
compare the healthy and postoperative rats’ behavior. 
 

VII. Discussion 
In this section, the result will be broken down 

to confirm that the device functions properly as well as 
address any limitations and shortcomings of the device. 
The experimental data for the signal directly from the 
Arduino showed a percent error that stayed within a 
constant range of 3.5-3.8%. While the output 
frequencies from the Arduino were consistent, they 
were not quite as precise as the team would have liked. 
Since the percent error is pretty consistent, the team 

believes that this can possibly be corrected by tweaking 
the algorithm code. It would take more testing to 
determine if that would work, but there are many 
parameters such as the amplitude, offset, and sampling 
frequency that can be altered to observe the frequency 
response. 

The percent error of the accelerometer output at 
150 Hz was roughly 5%, but the percent error at 350 
Hz was 3.8%. This percent error at 350 Hz is much 
closer to that of the Arduino signal, showing that the 
percent error decreased as the frequency was increased. 
There are two explanations for this change in percent 
error. The first is that the surface transducer has a 
worse frequency response at the beginning of the 
frequency range, compared to that of the upper limit of 
the frequency range. This means that the transducer is 
being driven at too low of a frequency, and thus is not 
able to translate that electronic signal to a physical 
output. The second explanation is that the 
accelerometer, not the surface transducer, is the 
component that has the poor frequency response. This 
would mean that the transducer is outputting the correct 
physical vibration, but the accelerometer is not able to 
detect that vibration accordingly. 

After further examination, it is believed that the 
surface transducer has a poor frequency response. This 
was based off of the data sheets for both of these 
components. The accelerometer has a corner frequency 
of 50 Hz and a bandwidth of greater than 500 Hz. This 
bandwidth range comfortably contains our frequency 
range. The data sheet of the surface transducer also 
indicates that the device has a passband beginning at 
507 Hz, which is outside of the intended frequency 
range. 
 The team was not able to perform animal 
testing during this design period.  These results would 
not have provided information about the functionality 
of the device but rather its efficacy. Even if the device 
functioned as intended, there is no guarantee that the 
rats would respond in the predicted way. In addition, if 
the results did not indicate significant differences in the 
rats before and after surgery, then other options to 
differentiate the stimulus would need to be considered. 
For example, the frequency range or amplitude would 
need to be changed moving forward. 

 
VIII. Conclusion/Future Development 

The team designed a somatosensory 
stimulation device that can be used to verify the 
efficacy of our client’s electrode interface for 
peripheral nerve therapy. Current rat training 
enclosures do not offer stimulation that can be isolated 
to the individual hindlimbs. The device consists of an 
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enclosure that is able to apply a graded stimulus to the 
two hindlimbs individually using an Arduino 
microcontroller. The final prototype includes clear 
plexiglass walls and floors, and the stimulus is provided 
by two platforms that vibrate via speaker actuators 
using the Arduino. A rearing rat will stand on these 
platforms during training and testing. The motors are 
secured using a vibration damping foam. 

The team’s bench testing demonstrated that the 
device operates correctly. It was confirmed that the 
Arduino inputs a sine wave at a frequency within 3.5-
3.8% of the mechanical vibrations and the platform also 
operate at a frequency within 3.8-5% error of the 
desired frequency. By adjusting the sine wave 
algorithms and/or shifting the frequency range, the 
team believes the devices could produce even more 
precise signals. The team also wants to perform animal 
testing to demonstrate that the device can be used for 
verifying the efficacy of the electrodes. By creating this 
device to evaluate the effectiveness of the electrode 
therapy, the research can continue to move forward and 
lead to vast improvements for nerve regeneration and 
phantom limb pain in humans. 
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APPENDIX I 
Table 1: Experimental data for frequency testing of the Arduino 
Due signal 

 
 

Table 2: Experimental data for frequency testing of the physical 
output from the transducers 

 
 
 

APPENDIX II 

 
Figure 1: This shows the oscilloscope output with one DAC port 
outputting 150 Hz (yellow) and the other outputting 250 Hz (green). 
 

 
Figure 2: This shows the oscilloscope output with both DAC ports 
outputting at 300 Hz. 
 

 
Figure 3: This shows the oscilloscope output from the 
accelerometer when driving the motor at 200 Hz. 
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APPENDIX III 

Arduino Code 
/* 
      SineWave.ino 
      UW Madison BME Design: Team Hindlimb Stim. 
      Written by Timothy Lieb- April 25, 2018. 
*/ 
 
#include <DueTimer.h> 
#include <SineWave.h> 
int lowerFreqBound = 150; 
int upperFreqBound = 350; 
int leftFreq = 0; 
int rightFreq = 0; 
bool setDelay = false; 
bool globalDelay = false; 
int delayTime = 0; 
 
void setup() { 
  analogReadResolution(12); 
  analogWriteResolution(12); 
  Serial.begin(9600); 
  while (!Serial); 
  Serial.println("<Arduino is ready>"); 
} 
 
void loop() { 
  if (setDelay == false) { 
    createDelay(); 
  } 
  setLeftFreq(); 
  setRightFreq(); 
  applyStimulus(); 
} 
 
void createDelay() { 
  bool isSet = false; 
  char answer; 
  Serial.println("Would you like to set a constant stimulus duration (y/n): "); 
  while (!isSet) { 
    if (Serial.available() > 0) { 
      answer = Serial.read(); 
      isSet = true; 
    } 
  } 
  if (answer == 'y') { 
    isSet = false; 
    Serial.println("Enter constant stimulus duration: "); 
    while (!isSet) { 
      if (Serial.available() > 0) { 
        delayTime = Serial.parseInt(); 
        globalDelay = true; 
        Serial.print("A constant stimulus duration of "); 
        Serial.print(delayTime); 
        Serial.println(" seconds has been set."); 
        isSet = true; 
      } 
    } 
  } 
  else { 
    Serial.println("The duration will be set for each stimulus individually."); 
  } 
  setDelay = true; 
} 
 
void setLeftFreq() { 
  bool isSet = false; 
  int input = 0; 
  Serial.println("Enter left frequency: "); 
  while (!isSet) { 
    if (Serial.available() > 0) { 
      input = Serial.parseInt();  
      if (lowerFreqBound <= input && input <= upperFreqBound) { 
        leftFreq = input; 
        Serial.print("Left frequency set to "); 
        Serial.print(input); 
        Serial.println(" Hz."); 
        isSet = true; 
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      } 
      else if (input == 0) { 
        //left motor off 
        leftFreq = 0; 
        Serial.println("Left frequency set to 0 Hz."); 
        isSet = true; 
      } 
      else { 
        Serial.print("Frequency must be between "); 
        Serial.print(lowerFreqBound); 
        Serial.print(" Hz and "); 
        Serial.print(upperFreqBound); 
        Serial.println(" Hz."); 
        Serial.println("Enter left frequency: "); 
      } 
    } 
  } 
} 
 
void setRightFreq() { 
  bool isSet = false; 
  int input = 0; 
  Serial.println("Enter right frequency: "); 
  while (!isSet) { 
    if (Serial.available() > 0) { 
      input = Serial.parseInt(); 
      if (lowerFreqBound <= input && input <= upperFreqBound) {  
        rightFreq = input; 
        Serial.print("Right frequency set to "); 
        Serial.print(input); 
        Serial.println(" Hz."); 
        isSet = true; 
      } 
      else if (input == 0) { 
        //right motor off 
        rightFreq = 0; 
        Serial.println("Right frequency set to 0 Hz."); 
        isSet = true; 
      } 
      else { 
        Serial.print("Frequency must be between "); 
        Serial.print(lowerFreqBound); 
        Serial.print(" Hz and "); 
        Serial.print(upperFreqBound); 
        Serial.println(" Hz."); 
        Serial.println("Enter right frequency: "); 
      } 
    } 
  } 
} 
 
void applyStimulus() { 
  if (globalDelay == false) { 
    bool isSet = false; 
    Serial.println("Enter the stimulus duration: "); 
    while (!isSet) { 
      if (Serial.available() > 0) { 
        delayTime = Serial.parseInt(); 
        Serial.print("A stimulus duration of "); 
        Serial.print(delayTime); 
        Serial.println(" seconds has been set."); 
        isSet = true; 
      } 
    } 
  } 
 
  bool isApplied = false; 
  Serial.println("Press any key to apply stimulus: "); 
  while (!isApplied) { 
    if (Serial.available() > 0) { 
      char clearBuffer = Serial.read();  
      if (leftFreq == 0 && rightFreq == 0) { 
        Serial.println("No stimulus applied, both frequencies set to 0."); 
        isApplied = true; 
      } 
      else if (rightFreq == 0) { 
        sw.setPin(0); //DAC0 for left motor 
        sw.setSamplingFreq(100/12); 
        sw.playTone(leftFreq, delayTime); 
        isApplied = true; 
        resetParams(); 
      } 
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      else if (leftFreq == 0) { 
        sw.setPin(1); //DAC1 for right motor 
        sw.setSamplingFreq(100/12); 
        sw.playTone(rightFreq, delayTime); 
        isApplied = true; 
        resetParams(); 
      } 
      else { 
        sw.setSamplingFreq(100/6); 
        sw.playTone2(leftFreq, rightFreq, delayTime); 
        isApplied = true; 
        resetParams(); 
      } 
    } 
  } 
} 
 
void resetParams() { 
  Serial.println("Stimulus applied."); 
  rightFreq = 0; 
  leftFreq = 0; 
} 

APPENDIX IV 
Header Code 

/* 
 * SineWave.h  
 *      UW Madison BME Design: Team Hindlimb Stim. 
 *      Updated by Timothy Lieb- April 25, 2018. 
 *      Sine wave algorithms by C. Masenas, November 8, 2015.  
 * 
 */ 
  
#ifndef SineWave_h 
#define SineWave_h 
 
// use the DueTimer library for timing 
#include <DueTimer.h> 
// DAC0 for left motor 
#define OUTPIN0 DAC0 
// DAC1 for right motor 
#define OUTPIN1 DAC1 
 
class SineWave{ 
    private: 
        const float pi = 3.14159; 
 // amplitude of sine signal 
 const float A = 2000; 
 // offset for sine wave 
     const float D = 2000; 
 // set default output pin 
     int pin = OUTPIN0; 
 int count = 0; 
 int delayCount = 0; 
 // set default sampling frequency in microseconds 
     float SF = (100/6)/1000000.0; 
     // c1 = first filter coefficient, c1b used for second tone 
 float ca, cb; 
 // filter registers, updated from interrupt so must be volatile 
     volatile float a[3], b[3]; 
 
    public: 
 // changes sampling frequency 
 void setSamplingFreq(float interval); 
 // changes the output to DAC0 or DAC1 
 void setPin(int pinNew); 
 // play one tone for a specified time 
 void playTone(float freq, int duration); 
 // play one tone 
 void playTone(float freq); 
 // play two tones for a specified time     
 void playTone2(float freq1, float freq2, int duration); 
 // play two tones 
 void playTone2(float freq1, float freq2); 
 // stop playing a tone  
 void stopTone(void); 
 // computes samples for one tone 
 void compute(void); 
 // computes samples for two tones 
 void compute2(void);   
}; 



 
IEEE REVIEWS IN BIOMEDICAL ENGINEERING                                                                                                    13 

// sw is instantiated in cpp file 
extern SineWave sw;       
#endif 
 

APPENDIX V 
C++ Code 

/* 
 * SineWave.cpp 
 *      UW Madison BME Design: Team Hindlimb Stim. 
 *      Updated by Timothy Lieb- April 25, 2018. 
 *      Sine wave algorithms by C. Masenas, November 8, 2015.  
 * 
 */ 
  
#include <SineWave.h> 
// uses DueTimer library for interrupt timing 
#include <DueTimer.h> 
 
extern "C" { 
    void external_compute(void); 
    void external_compute2(void); 
} 
void SineWave::setSamplingFreq(float T){ 
    SF = T/1000000.0 ; //change the sampling frequency 
} 
 
void SineWave::setPin(int pinNew){ 
    if (pinNew == 0) { 
 pin = OUTPIN0; 
    } 
    else { 
 pin = OUTPIN1; 
    } 
} 
  
void SineWave::playTone(float freq){ 
    // angular frequency in radians/second 
    float omega = 2.0*pi*freq; 
    // (omega * sampling frequency) squared 
    float wTsq = SF*SF*omega*omega; 
    // coefficient of first filter term  
    ca = (8.0 - 2.0*wTsq)/(4.0+wTsq); 
    // initialize filter coefficients 
    a[0] = 0.0;   
    a[1] = A*sin(omega*SF); 
    a[2] = 0.0;  
 
    Timer1.attachInterrupt(external_compute); 
    Timer1.start(SF*1000000);             
} 
 
void SineWave::playTone2(float freq, float freq2){      
    float omega = 2.0*pi*freq; 
    float omega2 = 2.0*pi*freq2; 
    float wTsq = SF*SF*omega*omega; 
    float wTsq2 = SF*SF*omega2*omega2; 
    ca = (8.0 - 2.0*wTsq)/(4.0+wTsq);    
    cb = (8.0 - 2.0*wTsq2)/(4.0+wTsq2);  
    a[0] = 0.0; 
    a[1] = A*sin(omega*SF); 
    a[2] = 0.0; 
    b[0] = 0.0; 
    b[1] = A*sin(omega2*SF); 
    b[2] = 0.0;  
    
    Timer1.attachInterrupt(external_compute2); 
    Timer1.start(SF*1000000); 
}   
      
void SineWave::playTone(float freq, int duration){  
     
    delayCount = duration / (SF);    
    playTone(freq); 
 
    //delay(duration); 
     
    //stopTone(); 
    //Timer1.stop();  
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    //Timer1.detachInterrupt(); 
} 
 
void SineWave::playTone2(float freq, float freq2, int duration){  
     
    delayCount = duration / (SF*2);  
    playTone2(freq, freq2); 
       
    //delay(duration); 
     
    //stopTone(); 
    //Timer1.stop(); 
    //Timer1.detachInterrupt(); 
} 
 
void SineWave::stopTone(void){ 
     
    Timer1.stop();       
     
    Timer1.detachInterrupt();        
} 
   
void SineWave::compute(void){ 
    // compute the sample 
    a[2] = ca*a[1] - a[0]; 
    // shift the registers in preparation for the next cycle 
    a[0] = a[1] ; 
    a[1] = a[2] ;  
    // write to DAC 
    analogWrite(pin, a[2]+D); 
 
    //Added because calling stopTone() was not working correctly 
    if (count != delayCount){ 
        count ++; 
    } 
    else { 
 sw.stopTone();  
    }  
}  
 
void SineWave::compute2(void){ 
    a[2] = ca*a[1] - a[0]; 
    a[0] = a[1] ; 
    a[1] = a[2] ;  
    b[2] = cb*b[1] - b[0];   
    b[0] = b[1] ; 
    b[1] = b[2] ; 
     
    sw.setPin(1); 
    analogWrite(pin, a[2]+D); 
     
    sw.setPin(0); 
    analogWrite(pin, b[2]+D); 
     
     
    //Added because calling stopTone() was not working correctly 
    if (count != delayCount){ 
    if (count != delayCount){ 
        count ++; 
    } 
    else { 
 sw.stopTone();  
    }  
}   
       
// instantiate the SineWave sw instance here 
SineWave sw; 
 
void external_compute(void){ 
    sw.compute(); 
} 
 
void external_compute2(void){ 
    sw.compute2(); 
}   
 


