

A Device for the Somatosensory Stimulation of
Rodent Hindlimbs
__

Stephan Blanz​1​, Royal Oakes​1​, John Beckman​1​, Jinyuxuan Guo​1

1. University of Wisconsin - Madison, Department of Biomedical Engineering

__

Corresponding author and address:
Stephan Blanz
University of Wisconsin Madison, Department of Biomedical Engineering
1415 Engineering Drive
Madison, WI 53706
John Beckman
University of Wisconsin Madison, Department of Biomedical Engineering
1415 Engineering Drive
Madison, WI 53706

__

Declarations of interest: none

1

Abstract
Currently, no methods exist to test the efficacy of sciatic nerve repair on rodent models

based on responsiveness to hindlimb somatosensory stimulation. The proposed device
produces somatosensory stimulations through vibrations induced on the hindlimb of a
conscious rat. By isolating the stimulation to either left or right hindlimb, the subject is
presented a two-alternative forced choice (2AFC). A healthy rat is trained to conditionally
respond to the stimulus by indicating on which limb the stimulus was felt. Once the rat is
trained, the nerve is surgically deafferented and repaired. During recovery the rat is presented
with the same 2AFC at various time points to determine the length of recovery of sensory
function.

Keywords
Somatosensory Stimulation, Vibrotactile Stimulation, Two Alternative Forced Choice

(2AFC) Testing, Sciatic Nerve Repair

Introduction
Allowing patients to fully recover following a severed nerve is extremely challenging.

There are many studies regarding surgical methodologies as well as pre and post-operative
care to repair the damaged nerves in the Peripheral Nervous System (PNS) ​[1]–[4]​. One of the
main task of these studies is analyzing the success of these surgical procedures to determine
how effective the treatment was in repairing the neurological connection that was lost, or
damaged. This work could translate into surgical procedures to help humans who have had
their neurological connections damaged or severed, regain the control and sensations that they
may have lost otherwise.

Damage to nerves in adult mammals have very different regeneration possibilities
depending on where in the nervous system they occur. A damaged nerve in the Central
Nervous System (CNS), is almost completely incapable of regenerating due to the neuroglia in
the CNS [5]. Astrocytes in the CNS, after a nerve is damaged, form a barrier around the
damaged nerves, which turns into astroglial scar tissue. In addition to the blockage of nutrients
due to the astrocytes, and astroglial scar tissue, the myelin of the CNS releases
growth-inhibiting proteins which block any regrowth of a nerve in the CNS ​[5]​. However, in the
PNS, damaged nerve cells undergo Wallerian Degeneration, a process which protects a
portion of the damage peripheral nerve with Myelin, while the debris of the damaged section is
cleared by macrophages. Wallerian degeneration is followed by axon regeneration, in which
growth-promoting factors are released by the myelin and cell body, and help to guide the
regrowing axon back to the cell body ​[4]​. This process is only possible in the PNS and if the
distal portion of the axon is not too far from the cell body ​[5]​. In a scenario where the Wallerian
Degeneration leaves the axon too far to reattach to the cell body, a surgeon can guide the

2

https://www.zotero.org/google-docs/?ST3P2l
https://www.zotero.org/google-docs/?S6xsEA
https://www.zotero.org/google-docs/?XHRujh
https://www.zotero.org/google-docs/?pQKAzY

regrowing axon to the cell body by removing the damaged neurological tissue and scar tissue
in the area. Additionally, if the gap between the axon and cell body is too large, a non-essential
nerve may be sacrificed from elsewhere in the body ​[6]​. Although these procedures are well
documented, there currently exists no standardized way to test the effectiveness of these
surgeries. If this solution can be shown to have a significant positive impact on the
regeneration of nerve connections in rats, it could one day be implemented to help regrow
human nerves as well.

Historically, a nerve of interest in repair studies has been the sciatic nerve. This nerve
innervates from the buttocks into the leg and foot. It serves to connect the muscles of the leg
and foot to the spinal cord and brain ​[7]​. Thus, after surgical repair of this nerve, the success of
the surgery must be assessed by stimulating this nerve, and observing a rats ability to
distinguish between individual stimuli to each hindlimb. Conventional methods of nerve
stimulation includes heat and electric shock ​[8], [9]​. However, it may be detrimental to use
these methods in animal models since they may have limited nerve function. Such a stimulus
could then have the potential to harm the animal without without the subject showing signs of
pain. Therefore, there is a need for developing a non-invasive, non-harmful way to stimulate
the sciatic nerve in rats to determine the effectiveness of the surgery.

Different from heat and electric shock, vibration provides a safer way to stimulate the
nerve of interest. Beneath the skin of mammals, Meissner corpuscles, Pacinian corpuscles,
Merkel disks, and Ruffini corpuscles make up the mechanoreceptors that contribute to somatic
sensation ​[10]​. These mechanoreceptors are responsible for receiving touch and pressure
stimuli and sending corresponding signals to the brain. Vibrations can cause pressure on the
rodents’ skin and the rodents will notice it through this mechanism. Mice exhibited the most
noticeable transient responses to vibrational frequencies between 70-100 Hz, and at an
acceleration of 1.0 m/s​​2​​ ​[11]–[13]​. Another study found that rats, after being stimulated within a
range from 0 - 600 Hz, would attenuate with vibrations around 50 Hz ​[13]​. Furthermore, the
auditory perceptible frequency range in rats is from 200 Hz to 80 kHz ​[14]​. Therefore,
producing vibrations under 200 Hz would ensure the stimulus is limited to vibration rather than
auditory perception. These different studies will be used to help determine the range of
vibrational frequencies that will be available to stimulate the sciatic nerves of rats during
surgical nerve repair experiments.

Materials
A plexiglass enclosure was used to house the rodent. The bottom of the plexiglass

enclosure had a sheet of isoprene rubber coating the entire surface. The isoprene rubber
provides a sanitizable surface and is an ideal model for transmitting low frequency vibrations
[15]​. The electronics unit is housed underneath the enclosure and includes an amplifier
(Dayton Audio DTA-1 Class D AC/DC Battery Powered Mini Amplifier 15 WPC) ​[16]​ which is
connected to two transducers (Dayton Audio DAEX13CT-8 Coin Type 13mm Exciter 3W 8

3

https://www.zotero.org/google-docs/?BAHiDg
https://www.zotero.org/google-docs/?fjHcNf
https://www.zotero.org/google-docs/?1iKB3O
https://www.zotero.org/google-docs/?Iaur8W
https://www.zotero.org/google-docs/?EVA5mO
https://www.zotero.org/google-docs/?BAocT3
https://www.zotero.org/google-docs/?ufByAV
https://www.zotero.org/google-docs/?mm3v9w
https://www.zotero.org/google-docs/?L0Pf9L

Ohm) (Figure 1) ​[17]​. The transducers are part of two column assemblies which include: an
acrylic standoff, the transducer itself, ¾ inch PVC, filled with concrete (to increase stiffness),
and two layers of isoprene rubber to act as a dampener underneath. The transducer was
attached to the standoff and column using superglue. The column was attached to the
dampener using epoxy, and the dampener was attached to the acrylic using rubber cement.

The isoprene rubber floor and the acrylic standoff were selected to increase vibration
isolation to the target area. Acrylic was chosen due to its light weight and ability transmit
vibrations from the differing geometries of the circular transducer to the rectangular hindlimb
pad ​[15]​. The isoprene rubber was chosen due its ability to isolate vibrations, especially at low
frequencies ​[15], [18]​.

Figure 1 (Left). ​The finished device. Features: top enclosure with visible placement marks (white) for the
rodent’s hind limbs and nose holes through which the rat can nose poke based on stimulus and training
received. The electronics assembly is housed underneath. ​(Middle). ​The electronics assembly which
includes an amplifier and pedestals with transducer. ​(Right). ​Expanded view of the pedestal assembly
featuring an acrylic standoff, transducer, ¾” PVC column filled with concrete, and isoprene rubber as a
dampener.

For testing two Arduino UNOs were used in conjunction with MATLAB to collect data,
along with a Sparkfun TAL221 Miniature Load Cell ​[19]​, a Sparkfun HX711 Load Cell Amplifier
[20], [21]​ and a SparkFun LIS3DH Triple Axis Accelerometer ​[22]​.

Methods

Experimental Setup
Producing Transducer Inputs:​ For all experiments, the method of producing input to the
transducer was the same. The transducer accepts an input sinusoid and vibrates at the

4

https://www.zotero.org/google-docs/?EvUsmb
https://www.zotero.org/google-docs/?FjcWJ3
https://www.zotero.org/google-docs/?5jwirE
https://www.zotero.org/google-docs/?NhcBWK
https://www.zotero.org/google-docs/?GmDEYH
https://www.zotero.org/google-docs/?7Nf60f

frequency and intensity of the input sinusoid. We used the MATLAB file Pruebasonido.m to
produce the input sinusoid for all experiments. The amplitude of the sinusoid was either 0.1 or
0.2 and the frequency ranged from 20-200 Hz. Exceeding these limits could damage the
transducer.

Frequency Testing:​ A test was performed using a Logitech H390 USB Headset to determine
the relationship between input and output frequency of the transduce (Figure 2). The
microphone from the Logitech headset was placed 1/4 inch above the surface of the
transducer. Frequencies of 50, 100, and 150 Hz were used as inputs and 6 seconds of audio
was captured for each frequency. The audio file was analyzed using MATLAB’s Fast Fourier
Transform (FFT) to determine major frequency components.

Figure 2.​ Testing setup of frequency test. A microphone is used to collect the signal from the transducer.
A MATLAB code is then used to verify the output frequency matches input frequency through FFT.

Displacement Testing:​ A test was performed to determine the displacement of the transducer
at various input frequencies and voltages (Figure 3). A thin white plate was placed on top of the
transducer to provide contrast with a dark background. A ruler was placed next to the
transducer to provide a reference. A camera was used to take a 32 to 36 second video of the
transducer while it was producing vibrations. The video was processed in MATLAB by
averaging all the frames in the video to a single image. The resulting blur was then measured
in ImageJ for its thickness to determine peak-to-peak displacement.

5

Figure 3.​ Testing setup of displacement test. A camera is used to record the videos of a vibrating
transducer. A ruler (black) is placed aside to indicate scale.

Bleed Testing:​ A test was performed in the final design cage to determine the amount of
off-target stimulation produced when stimulating a single hindlimb. A Sparkfun ADXL335
accelerometer was placed directly on the platform being vibrated (direct-target configuration)
and recorded using an Arduino. Sampling was at 1000 Hz for 0.6 seconds. Then testing was
repeated with the accelerometer on the platform adjacent to the platform being vibrated
(off-target configuration). The magnitude of the acceleration vector was computed and was
analyzed using MATLAB’s FFT. At each input frequency, the amplitude of the FFT data for the
off-target configuration was divided by the amplitude of the FFT data for the direct-target
configuration to obtain the bleed percentage.

Load Cell Testing:​ A test was performed to determine the force exerted by the transducer
using a load cell (Figure 4). The load cell was fixed in the cage such that the free end was
above the transducer. There was a sheet of rubber between the load cell and the transducer.
The load cell was then used to measure the force produced by transducer due to acceleration
at various frequencies and amplitudes.

Figure 4.​ Testing setup of load cell test. The load cell (blue) is placed on either the vibrating pedal or the
non-vibrating pedal. The force generated by the transducer is collected and analyzed.

Data was collected from the accelerometer using an Arduino UNO and was sent to
MATLAB for processing (Appendix B). First, the motor was powered and 128 samples of the
acceleration vector were collected from the accelerometer at 1 kHz. This number of samples
was chosen due to memory limitations of the Arduino UNO. Second, the data was imported to
MATLAB. Third, the magnitude of the acceleration vector was computed. Fourth, the Fourier
transform of the accelerometer magnitude was computed using the MATLAB fast Fourier
transform ​[13]​. This method was used rather than sending the data one sample at a time
because literature suggests that our method leads to more accurate data ​[23]​.

6

https://www.zotero.org/google-docs/?1cv0pF
https://www.zotero.org/google-docs/?agRD3Y

Results

Figure 5.​ Relationship between displacement and frequency. The vertical displacement at an amplitude
of 0.1 and 0.2 was computed at frequencies between 25 Hz and 200 Hz at 25 Hz intervals (n=3 for each
trial).

From the displacement test, the displacement data at amplitude 0.1, 0.2 and frequencies
from 25 Hz to 200 Hz was collected. To find out the relationship between frequency and
amplitude, two Chi-square test is conducted on the results at 0.1 and 0.2 amplitude of the
displacement test. The vertical displacement at an amplitude of 0.1 and 0.2 was computed at
frequencies between 25 Hz and 200 Hz at 25 Hz intervals (n=3 for each trial). The Chi-square
test is then conducted to check whether there is significant difference between observed results
and the expected value. In this case, the observed results are displacement data at different
frequency and the expected value will be the overall average displacement at 0.1 and 0.2
amplitude. The null hypothesis is that there is no significant difference between displacement
results obtained from different frequency and overall average displacement, the alternative
hypothesis is there are significant differences. Both of the results of the two Chi-square test at
0.1 and 0.2 amplitude support our null hypothesis. There is no statistically significant difference
in displacement at various frequencies at 0.1 amplitude, ​Χ​2​ (df = 7, N = 24) = 0.01858, p > 0.99,
or at 0.2 amplitude, ​Χ​2​ (df = 7, N = 24) = 0.03269, p > 0.99.

7

Figure 6.​ Relationship between displacement and voltage. A summary of the results of the uncoupled
displacement measurements of the transducer. These results are sampled at a range of different
frequencies (25-200 Hz), and highlights the statistical results of figure 3.

The frequency amplitude test proves there is minimal relationship between frequency and
amplitude, while another test is needed to prove that the displacement of the transducer
increases as the input amplitude is turned up. A voltage displacement test is conducted on the
transducer to figure out the relationship between input voltage and displacement. At 0.1
amplitude, the measured displacement varies from 0.025 to 0.125 mm . At 0.2 amplitude, it
varies from 0.15 to 0.39 mm. As amplitude increases from 0.1 to 0.2, the average displacement
of the transducer also increases, from to . There is positive correlation between input amplitude
and displacement measured on the transducer. A one-tailed paired t-test was also run on the
data corresponding to the 0.1 and 0.2 input amplitudes, the results show a strong statistical
difference between the displacements and input amplitudes with p <0.001 (N=24).

8

Figure 7.​ Frequency verification. Samples were taken at 50 Hz, 100 Hz, and 150 Hz (n=5 for each).
There is a positive correlation between the input frequency and the measured frequency.

In order to justify that the output frequency is similar or equal to the input frequency, the
frequency verification test is designed and accomplished. The transducer is running at 50 Hz,
100 Hz and 150 Hz while this signal is recorded. A MATLAB code is then used to measure the
output frequency of the transducer through FFT. The measured average frequency is 50 Hz at
50 Hz input frequency, 100 Hz at 100 Hz input frequency and 150 Hz at 150 input frequency.
The out frequency is positively correlated with the input frequency. The pearson’s correlation
coefficient is 1.

9

Figure 8.​ Bleed between platforms. The percent bleed between the two platforms was calculated at
several frequencies (n=5 for each). There is a noticeable drop off in percent bleed between 100 Hz and
125 Hz. Error bars represent ± 1 SE.

Another parameter that needs to be tested is the isolation of the vibrations from two pedals. This
is very important because the device should be able to stimulate only one of the rodent’s
hindlimbs without stimulating the other. A bleedover test is conducted to see how much vibration
exists on non-vibrating pedal. The results are shown on the figure. Each data point represents
the off-target stimulation at that frequency, normalized by the on-target stimulation at the same
frequency. At frequencies under 100 Hz, the bleed percent is under 10%, while the bleed
percent can go over 30% at frequencies above 125 Hz. Bleed percent increases as the input
frequency becomes higher. At high frequencies over 100 Hz, the isolation of vibrations from two
pedals is partially lost.

Discussion
Engaging a rodent by applying a vibrational stimulus is a far more humane method of

stimulation than subjecting the animal to a painful stimulus. Conventionally, rodents have been
stimulated by the use of heat, cold, or electric shock. These stimulation methods can have

10

potentially detrimental effects by applying a dangerous stimulus to an animal without the ability
to pull away or respond to the stimulus.

By applying a vibrotactile stimulus to the hindlimbs of rodents rather than a potentially
harmful mode of stimuli the researchers using this tool will be able to explore the large
parameter space that this device encompasses. In previous iterations of this design, there was
a common phenomenon being seen in the use of different motors, such as an LRA or ERM,
amplitude-frequency coupling. However, when using the transducer as the displacement motor
the user has control of both output displacement, and output vibrational frequency. This gives
the user more freedom to determine the most effective parameters for stimulating the hindlimbs
in the rodents.

In the final design of this tool, a layer of isoprene rubber was laid on the bottom of the
enclosure in order to protect the electronics housed underneath the portion where the animals
will be placed. However, the results from the bleed testing show the problem with using this
rubber layer to insulate against biological waste from the animals. By covering the entire floor of
the enclosure with a sheet of rubber, there is bleed between the active and non-active
platforms. This is significantly more apparent at frequencies over 100 Hz. This is most likely due
to the increased acceleration in the motor needed to reach the same displacement in a shorter
period of time, which then impacts the other platform. There was the possibility in adding some
modularity to this section of the enclosure, however, safety of the electronic components and
simplicity of design were prioritized over minimal bleed. Additionally, the very low bleed,
approximately 10% at 100 Hz impacted this decision, as to which the recommendation is not to
use frequencies above 100 Hz.

Future work will include performing animal testing with our cage. The rats will be trained
to position itself with one foot standing on one platform and one foot on the other. There will be
3 holes on the side of the cage. The rats will be trained to use these holes to tell whether they
feel the vibration and in which foot. If they feel the vibration through their left foot, they will put
their nose into the left hole, and right hole for right foot. If the rat is unsure or feels nothing, they
will put their noses into the middle hole. Researchers can use this method to determine the
function of the reconnected sciatic nerve of the rats. In addition to examining the entire
parameter space of this research tool.

Acknowledgments
Funding for this project was provided by Dr. Aaron Suminski, a scientist with the

University of Wisconsin, department of Biomedical Engineering and Dr. Aaron Dingle, an
associate scientist with the University of Wisconsin, Department of Surgery, Poore lab. The
Poore lab’s research focus is clinical and experimental microsurgery, with an emphasis on
peripheral nerve regeneration and repair. Together they are researching the effectiveness of
various treatments and methods of nerve repair.

Additionally, this project could not have been completed without the help and
mentorship of Dr. Jeremy Rogers.

11

Appendix

A. Preliminary Design Specifications
Function:

Peripheral nerve injuries are common, debilitating and costly. Approximately 2.8% - 5%
of all trauma patients in the US sustain such an injury. Many peripheral nerve injuries are a
result of amputations, which affect an estimated 185,000 people in the US each year.
Prosthetics are continually improving, but a large issue that remains is the patient’s lack of
tactile perception. Many researchers, including Dr. Aaron Dingle, are designing devices to solve
this problem. The functional outcome of these devices can be assessed in humans by asking
the patient questions, but this technique is not an option in animal models. Rats are commonly
used as animal models as a precursor to human subject testing. In order to receive functional
outcome data from rats, a healthy rat can be trained to respond in a certain way to a
somatosensory stimulus. A peripheral nerve can then be surgically cut and the novel device
implanted. The device can then be used to apply what should be recognized as the same
somatosensory stimulus the rat was trained with. Observations on the percent of correct
reactions can be used to determine success.

This project aims to design the somatosensory stimulation device used to train the rats.
The device should be able to apply a graded stimulus to at least two limbs individually. The
device will consist of a cage or cage insert as well as a microcontroller to control the stimulus
grade.

Client requirements:

● Must house one rat

● Must be able to individually stimulate each hind limb of the rat

● Must be completely controlled by a computer (no user input other than to start
the device and configure settings)

● Must be sterilizable

● Mouse must be visible while in the cage

Design requirements:

1. Physical and Operational Characteristics

12

a. Performance requirements:​ Multiple experiments may be run per day. The

device should be capable of repeated use and cleaning between trials.

b. Safety​: The device should not harm the animals in any way.

c. Accuracy and Reliability​: The device should accurately and reliably produce a

graded stimulation of the user’s choice.

d. Life in Service​​​: Trials would last approximately 15 minutes in duration.

e. Shelf Life​: A 10 year shelf life is prefered.

f. Operating Environment​:​​ ​Room temperature (25℃) and pressure (1 atm).

g. Ergonomics​: The rodent should have enough room to rear on its hind legs and

interact with the forward facing wall.

h. Size​: No smaller than 30 cm x 30 cm x 60 cm. No larger than 120 cm x 120
xm x

120 cm

i. Weight​: No heavier than 11 kg.

j. Materials​: Plexiglass.

k. Aesthetics, Appearance, and Finish​: Must be able to observe test subject

through wall material.

2. Production Characteristics

a. Quantity​: One unit.

b. Target Product Cost:​ < $100

3. Miscellaneous

a. Standards and Specifications​:​​ ​The device should be approved by the

UW-Madison Research Animal Resources and Compliance (RARC) center.

b. Competition​: None

13

B. MATLAB and Arduino Code
Accel_read.ino
#include <MsTimer2.h>

#define BUFF_SIZE 384

/* The function that will read data from the arduino. */
void getData();

/* The analog inputs. */
int xin = A0;
int yin = A1;
int zin = A2;

/* Buffer to hold values from accelerometer. */
unsigned short buff[BUFF_SIZE];

/* A count of the number of elemets in buff. */
unsigned short cc = 0;

/* The variables to control the motor. */
int motor = 9;
int power = 252;

void setup() {
 analogWrite(motor, power);

 Serial.begin(9600); // Start serial communication.

 pinMode(xin, INPUT);
 pinMode(yin, INPUT);
 pinMode(zin, INPUT);

 Serial.println("D");

 MsTimer2::set(1, getData);
 MsTimer2::start();
}

void loop() {
 int matCmd = 0;

14

 if (cc >= BUFF_SIZE) {
 MsTimer2::stop();
 }

 // If matlab needs more data, restart the program.
 matCmd = Serial.read();
 if (matCmd == 49) {
 Serial.println('1');

 for (int i = 0; i < BUFF_SIZE; i++) {
 Serial.println(buff[i]);
 }

 cc = 0;
 MsTimer2::start();
 }
}

void getData() {
 buff[cc++] = analogRead(xin);
 buff[cc++] = analogRead(yin);
 buff[cc++] = analogRead(zin);

 if (cc >= BUFF_SIZE) {
 MsTimer2::stop();
 }
}

15

Load Cell Calibration

#include <HX711.h>

/*
 *
Source code provided by
 By: Nathan Seidle
 SparkFun Electronics
 Date: November 19th, 2014
 License: This code is public domain but you buy me a beer if you use this and we meet
someday (Beerware license).

 Expanded by:
 Stephan Blanz

 This is the calibration sketch. Use it to determine the calibration_factor that the main example
uses. It also
 outputs the zero_factor useful for projects that have a permanent mass on the scale in between
power cycles.

 Setup your scale and start the sketch WITHOUT a weight on the scale
 Once readings are displayed place the weight on the scale
 Press +/- or a/z to adjust the calibration_factor until the output readings match the known
weight
 Use this calibration_factor on the example sketch

 This example assumes pounds (lbs). If you prefer kilograms, change the Serial.print(" lbs"); line
to kg. The
 calibration factor will be significantly different but it will be linearly related to lbs (1 lbs =
0.453592 kg).

 Your calibration factor may be very positive or very negative. It all depends on the setup of your
scale system
 and the direction the sensors deflect from zero state
 This example code uses bogde's excellent library: https://github.com/bogde/HX711
 bogde's library is released under a GNU GENERAL PUBLIC LICENSE
 Arduino pin 2 -> HX711 CLK
 3 -> DOUT
 5V -> VCC
 GND -> GND

 Most any pin on the Arduino Uno will be compatible with DOUT/CLK.

 The HX711 board can be powered from 2.7V to 5V so the Arduino 5V power should be fine.

16

*/

#include "HX711.h"

#define DOUT 3
#define CLK 2

HX711 scale;

float calibration_factor = 11800; // 11800 in cage for g

void setup() {
 Serial.begin(9600);
 Serial.println("HX711 calibration sketch");
 Serial.println("Remove all weight from scale");
 Serial.println("After readings begin, place known weight on scale");
 Serial.println("Press + or a to increase calibration factor");
 Serial.println("Press - or z to decrease calibration factor");

 scale.begin(DOUT, CLK);
 scale.set_scale();
 scale.tare(); //Reset the scale to 0

 long zero_factor = scale.read_average(); //Get a baseline reading
 Serial.print("Zero factor: "); //This can be used to remove the need to tare the scale. Useful in
permanent scale projects.
 Serial.println(zero_factor);
}

void loop() {

 scale.set_scale(calibration_factor); //Adjust to this calibration factor

 Serial.print("Reading: ");
 Serial.print(scale.get_units(), 1);
 Serial.print(" g"); //Change this to kg and re-adjust the calibration factor if you follow SI units
like a sane person
 Serial.print(" calibration_factor: ");
 Serial.print(calibration_factor);
 Serial.println();

 if(Serial.available())
 {
 char temp = Serial.read();

17

 if(temp == '+' || temp == 'a')
 calibration_factor += 25;
 else if(temp == '-' || temp == 'z')
 calibration_factor -= 25;
 else if(temp == 'w')
 calibration_factor += 100;
 else if(temp == 's')
 calibration_factor -= 100;
 else if(temp == 'e')
 calibration_factor += 1000;
 else if(temp == 'd')
 calibration_factor -= 1000;
 else if(temp == 't')
 scale.tare();
 }
}

18

Load Cell Continuous Measurement

/*
 Example using the SparkFun HX711 breakout board with a scale
 By: Nathan Seidle
 SparkFun Electronics
 Date: November 19th, 2014
 License: This code is public domain but you buy me a beer if you use this and we meet
someday (Beerware license).

 This example demonstrates basic scale output. See the calibration sketch to get the
calibration_factor for your
 specific load cell setup.

 This example code uses bogde's excellent library: https://github.com/bogde/HX711
 bogde's library is released under a GNU GENERAL PUBLIC LICENSE

 The HX711 does one thing well: read load cells. The breakout board is compatible with any
wheat-stone bridge
 based load cell which should allow a user to measure everything from a few grams to tens of
tons.
 Arduino pin 2 -> HX711 CLK
 3 -> DAT
 5V -> VCC
 GND -> GND

 The HX711 board can be powered from 2.7V to 5V so the Arduino 5V power should be fine.

*/

#include "HX711.h"

#define calibration_factor 11800.0 //This value is obtained using the
SparkFun_HX711_Calibration sketch

#define DOUT 3
#define CLK 2

HX711 scale;

void setup() {
 Serial.begin(9600);
 // Serial.println("HX711 scale demo");

19

 scale.begin(DOUT, CLK);
 scale.set_scale(calibration_factor); //This value is obtained by using the
SparkFun_HX711_Calibration sketch
 scale.tare(); //Assuming there is no weight on the scale at start up, reset the scale to 0

 // Serial.println("Readings:");
}

void loop() {
 Serial.print(scale.get_units(), 1); //scale.get_units() returns a float
 // Serial.print(" g"); //You can change this to kg but you'll need to refactor the calibration_factor
 Serial.println();
}

20

Movie Frame Averager
%% Movie Averager
% By: Stephan Blanz
% Portions of code found at:
https://ww2.mathworks.cn/matlabcentral/answers/59194-reading-video-file-to-matlab?s_tid=gn_l
oc_drop

% This code will ask the user to select a file. The program will then
% average the frames and both display and save the mean frame as well as an
% index frame (which can be selected by the user in the code).
%
% It is not recommended to use the matlab generated pictures for imageJ
% analysis as I have found there seems to be a compression that causes
% blur. It is also not recommended to use matlab to zoom in on generated
% pictures, but to let imageJ do this instead, as this has also been
% observed to cause blur.
%
% This program will show the images more as a sanity check than an
% analytical tool. Ensure you have selected the correct file and that your
% reference frame is free of blue and conversely, your mean frame has blur.

%%
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.

% Set this to the index of the frame you want to use as reference. Recommend
% to use one shortly before start of video since there is no motor motion
% yet and also no artifact from pushing record
indexGrabLocation = 5;

strErrorMessage = sprintf('Please select a file you want to analyze.');
response = questdlg(strErrorMessage, 'Choose a File', 'Select File', 'Cancel', 'Select File');
if strcmpi(response, 'Select File')
 [baseFileName, folderName, FilterIndex] = uigetfile('*.mov'); % Change this if using a different
file format
 if ~isequal(baseFileName, 0)
 movieFullFileName = fullfile(folderName, baseFileName);
 else
 return;
 end

21

else
 return;
end

try
 videoObject = VideoReader(movieFullFileName)
 % Determine how many frames there are.
 numberOfFrames = videoObject.NumberOfFrames;
 vidHeight = videoObject.Height;
 vidWidth = videoObject.Width;

 numberOfFramesWritten = 0;

 % Loop through the movie, getting mean frame.
 for frame = 1 : numberOfFrames
 % Extract the frame from the movie structure.
 thisFrame = read(videoObject, frame);

 % Uncomment if you want to go frame by frame and watch
 % WARNING: TAKES REAAAAALLY LONG.
 % % % Display it
 % % hImage = subplot(1, 2, 1);
 % % image(thisFrame);
 % % axis('on', 'image');
 % % caption = sprintf('Frame %4d of %d.', frame, numberOfFrames);
 % % title(caption, 'FontSize', fontSize);
 % % drawnow; % Force it to refresh the window.

 % Calculate the mean frame.
 if frame == 1
 sumFrame = double(thisFrame);
 elseif frame == 5
 indexFrame = thisFrame;
 else
 sumFrame = sumFrame + double(thisFrame);
 end
 meanFrame = uint8(sumFrame / frame);
 % % Uncomment this to plot as you go
 % % Plot the mean gray levels.
 % hPlot = subplot(1, 2, 2);
 % imshow(meanFrame);
 % axis('on', 'image');
 % caption = sprintf('Mean of %d frames', frame);
 % title(caption, 'FontSize', fontSize);
 % drawnow;

22

 %
 % % Update user with the progress. Display in the command window.
 % progressIndication = sprintf('Processed frame %4d of %d.', frame, numberOfFrames);
 % disp(progressIndication);
 end

 hImage = figure(1);
 imshow(indexFrame);
 % Uncomment if you want it zoomed in. Not recommended for image
 % processing as MATLAB screws with the formatting and you get a blur
 %axis([1000 2000 700 1000]);
 caption = sprintf('%s Index Frame', baseFileName);
 title(caption);

 hPlot = figure(2);
 imshow(meanFrame);
 %axis([1000 2000 700 1000]);
 caption = sprintf('%s Mean of %d frames', baseFileName, frame);
 title(caption);

 %axis([hImage hPlot],[370 570 190 250],'on','image')

 % IMPORTANT: This is where images are stored.
 fileName1 = sprintf('IndexFrame_%s.png', baseFileName);
 fileName2 = sprintf('MeanFrame_%s.png', baseFileName);
 imwrite(indexFrame,fileName1);
 imwrite(meanFrame,fileName2);

 % Alert user that we're done.
 finishedMessage1 = sprintf('Done! It processed %d frames of\n "%s"', numberOfFrames,
movieFullFileName);
 finishedMessage2 = sprintf('Files saved as\n "%s" \n and \n "%s"', fileName1, fileName2);
 disp(finishedMessage1); % Write to command window.
 uiwait(msgbox(finishedMessage1)); % Also pop up a message box.
 uiwait(msgbox(finishedMessage2)); % Also pop up a message box.

catch ME
 % Some error happened if you get here.
 strErrorMessage = sprintf('Error extracting movie frames from:\n\n%s\n\nError: %s\n\n)',
movieFullFileName, ME.message);
 uiwait(msgbox(strErrorMessage));
end

23

MatlabSerialArduino.m
clear
close all
clc

% The number of samples in a single package from the Arduino.
PACKAGE_SIZE = 128;
% The number of packages recieved from the Arduino.
PACKAGE_NUM = 1;
% The number of values in each sample from the Arduino.
SAMP_DIM = 3;

xyzData = zeros(PACKAGE_SIZE, SAMP_DIM);
xData = zeros(PACKAGE_SIZE * PACKAGE_NUM, 1);
xDataFFT = zeros(PACKAGE_SIZE * PACKAGE_NUM, 1);
t = 1:PACKAGE_SIZE;
mag = zeros(PACKAGE_SIZE * PACKAGE_NUM, 1);
magFFT = zeros(PACKAGE_SIZE * PACKAGE_NUM, 1);

% Initialize communication with Arduino.
try
 s = serial('COM5', 'BaudRate', 9600);
 fopen(s);
 fscanf(s); % Get the first byte to acknowledge Arduino.
catch
 warning('Could not establish connection with Arduino.');
 fclose(s);
end

% Get data from Arduino a certain number of times.
for n = 1:PACKAGE_NUM
 try
 % Send a signal to the Arduino to get another data set.
 fwrite(s, '1', 'uint16');

 fscanf(s);

 % Read data from arduino.
 for i = 1:PACKAGE_SIZE
 for j = 1:SAMP_DIM
 val = fscanf(s);

24

 xyzData(i,j) = str2double(val([1:length(val) - 2]));
 end
 end

 % Get the magnitude of the acceleration vectors.
 for i = 1:PACKAGE_SIZE
 mag(((n-1)*PACKAGE_SIZE) + i) = norm(xyzData(i, :));
 end

 xData([(((n-1)*PACKAGE_SIZE) + 1):(((n)*PACKAGE_SIZE))]) = xyzData(:,1);
 n

 catch
 warning('Something happened.');
 fclose(s);
 end % End Try-Catch
end % End for loop

fclose(s); % Close serial communication with Arduino.

magFFT = fft(mag);
xDataFFT = fft(xData);

25

PlotsPlotsPlots.m

% The number of samples in a single package from the Arduino.
PACKAGE_SIZE = 128;
% The number of packages received from the Arduino.
PACKAGE_NUM = 1;
% The number of values in each sample from the Arduino.
SAMP_DIM = 3;

% x1 = abs(fftshift(csvread("cyl_dir_mag_102.csv")));
% x2 = abs(fftshift(csvread("cyl_dir_mag_127.csv")));
x3 = abs(fftshift(csvread("cyl_dir_mag_152.csv")));
x4 = abs(fftshift(csvread("cyl_dir_mag_177.csv")));
x5 = abs(fftshift(csvread("cyl_dir_mag_202.csv")));
x6 = abs(fftshift(csvread("cyl_dir_mag_227.csv")));
x7 = abs(fftshift(csvread("cyl_dir_mag_252.csv")));

freq = ((0:(length(x7)-1))-(PACKAGE_SIZE/2)) ./ (0.001*PACKAGE_SIZE);

figure
hold on
% plot(freq, x1, 'color', [1 63/255 85/255])
% plot(freq, x2, 'color', [1 178/255 53/255])
plot(freq, x3, 'color', [1 74/255 186/255])
plot(freq, x4, 'color', [215/255 106/255 1])
plot(freq, x5, 'color', [116/255 116/255 1])
plot(freq, x6, 'color', [6/255 233/255 0])
plot(freq, x7, 'color', [0.0000 115/255 14/255])
hold off

legend('3.0V','3.5V','4.0V','4.5V','5.0V')
axis([0 250 0 50])
xlabel('Frequency (Hz)')
ylabel('Amplitude')

26

Multiplots.m

% The number of samples in a single package from the Arduino.
PACKAGE_SIZE = 128;
% The number of packages recieved from the Arduino.
PACKAGE_NUM = 1;
% The number of values in each sample from the Arduino.
SAMP_DIM = 3;

% x1 = abs(fftshift(csvread("mag_102.csv")));
% x2 = abs(fftshift(csvread("mag_127.csv")));
x3 = abs(fftshift(csvread("cyl_dir_mag_152.csv")));
x4 = abs(fftshift(csvread("cyl_dir_mag_177.csv")));
x5 = abs(fftshift(csvread("cyl_dir_mag_202.csv")));
x6 = abs(fftshift(csvread("cyl_dir_mag_227.csv")));
x7 = abs(fftshift(csvread("cyl_dir_mag_252.csv")));

% y1 = abs(fftshift(csvread("coin_direct_mag_102.csv")));
% y2 = abs(fftshift(csvread("coin_direct_mag_127.csv")));
y3 = abs(fftshift(csvread("noise1_mag_153.csv")));
y4 = abs(fftshift(csvread("noise1_mag_178.csv")));
y5 = abs(fftshift(csvread("noise1_mag_203.csv")));
y6 = abs(fftshift(csvread("noise1_mag_228.csv")));
y7 = abs(fftshift(csvread("noise1_mag_253.csv")));

% z1 = abs(fftshift(csvread("coin_noise_mag_102.csv")));
% z2 = abs(fftshift(csvread("coin_noise_mag_127.csv")));
z3 = abs(fftshift(csvread("noise_mag_153.csv")));
z4 = abs(fftshift(csvread("noise_mag_178.csv")));
z5 = abs(fftshift(csvread("noise_mag_203.csv")));
z6 = abs(fftshift(csvread("noise_mag_228.csv")));
z7 = abs(fftshift(csvread("noise_mag_253.csv")));

freq = ((0:(length(x7)-1))-(PACKAGE_SIZE/2)) ./ (0.001*PACKAGE_SIZE);

figure
subplot(3,1,1);
hold on
% plot(freq, x1, 'color', [1 63/255 85/255])
% plot(freq, x2, 'color', [1 178/255 53/255])
plot(freq, x3, 'color', [1 74/255 186/255])
plot(freq, x4, 'color', [215/255 106/255 1])
plot(freq, x5, 'color', [116/255 116/255 1])

27

plot(freq, x6, 'color', [6/255 233/255 0])
plot(freq, x7, 'color', [0.0000 115/255 14/255])
hold off

title('Direct Placement')
legend('3.0V','3.5V','4.0V','4.5V','5.0V')
axis([0 250 0 50])

subplot(3,1,2);
hold on
% plot(freq, y1, 'color', [1 63/255 85/255])
% plot(freq, y2, 'color', [1 178/255 53/255])
plot(freq, y3, 'color', [1 74/255 186/255])
plot(freq, y4, 'color', [215/255 106/255 1])
plot(freq, y5, 'color', [116/255 116/255 1])
plot(freq, y6, 'color', [6/255 233/255 0])
plot(freq, y7, 'color', [0.0000 115/255 14/255])
hold off

title('Dampened')
ylabel('Amplitude')
axis([0 250 0 1000])

subplot(3,1,3);
hold on
% plot(freq, z1, 'color', [1 63/255 85/255])
% plot(freq, z2, 'color', [1 178/255 53/255])
plot(freq, z3, 'color', [1 74/255 186/255])
plot(freq, z4, 'color', [215/255 106/255 1])
plot(freq, z5, 'color', [116/255 116/255 1])
plot(freq, z6, 'color', [6/255 233/255 0])
plot(freq, z7, 'color', [0.0000 115/255 14/255])
hold off

title('Off-target Stimulation')
axis([0 250 0 1000])
xlabel('Frequency (Hz)')

Pruebasonido.m
function varargout = pruebasonido(varargin)
% PRUEBASONIDO MATLAB code for pruebasonido.fig

28

% PRUEBASONIDO, by itself, creates a new PRUEBASONIDO or raises the existing
% singleton*.
%
% H = PRUEBASONIDO returns the handle to a new PRUEBASONIDO or the handle to
% the existing singleton*.
%
% PRUEBASONIDO('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PRUEBASONIDO.M with the given input arguments.
%
% PRUEBASONIDO('Property','Value',...) creates a new PRUEBASONIDO or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before pruebasonido_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to pruebasonido_OpeningFcn via varargin.
%qa
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help pruebasonido

% Last Modified by GUIDE v2.5 17-Apr-2019 21:19:32

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @pruebasonido_OpeningFcn, ...
 'gui_OutputFcn', @pruebasonido_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

29

% --- Executes just before pruebasonido is made visible.
function pruebasonido_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to pruebasonido (see VARARGIN)

% Choose default command line output for pruebasonido
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes pruebasonido wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = pruebasonido_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in load.
function load_Callback(hObject, eventdata, handles)
% hObject handle to load (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
myGui=guidata(handles.figure1);
%[file,path] = uigetfile('*.mp3','Seleccione un archivo de sonido');
%[x,fs] = audioread([path file]);
fs = 20500;
myGui.freqSam=fs;
freq = get(handles.slider1,'value');

30

amp = get(handles.slider2,'value');
%t = linspace(0, fs*2, fs*8);
%s = amp*sin(2*pi*t*freq);
duration=5;
values=0:1/fs:duration;
s = amp*sin(2*pi*freq*values);

left = get(handles.checkbox1, 'Value');
right = get(handles.checkbox2, 'Value');
if left == 1 && right ==0
 Out = [s; zeros(size(values))]';%zeros(size(t))
elseif right == 1 && left ==0
 Out = [zeros(size(values)) ; s]';
else
 Out = [s ; s]';
end

%Out = [zeros(size(values));s];%zeros(size(t))
myGui.datasound=Out;
myGui.player=audioplayer(myGui.datasound,myGui.freqSam);
myGui.flag=2;
guidata(handles.figure1,myGui)

% --- Executes on button press in play.
function play_Callback(hObject, eventdata, handles)
% hObject handle to play (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
myGui=guidata(handles.figure1);
if(myGui.flag==2)
 myGui.flag=1;
 disp('2');
 play(myGui.player);
else
 if(myGui.flag == 1)
 disp('1');
 myGui.flag=0;
 pause(myGui.player);
 else
 disp('0');
 myGui.flag=1;

31

 resume(myGui.player)
 end
end
guidata(handles.figure1,myGui);

% --- Executes on button press in stop.
function stop_Callback(hObject, eventdata, handles)
% hObject handle to stop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
myGui=guidata(handles.figure1);
myGui.flag=2;
stop(myGui.player);
guidata(handles.figure1,myGui);

% --- Executes on slider movement.
function slider2_Callback(hObject, eventdata, handles)
% hObject handle to slider2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
b = get(handles.slider2,'value')
set(handles.text2,'String',num2str(b));

% --- Executes during object creation, after setting all properties.
function slider2_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

32

% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a = get(handles.slider1,'value')
set(handles.text1,'String',num2str(a));

% --- Executes during object creation, after setting all properties.
function slider1_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on button press in checkbox1.
function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

% --- Executes on button press in checkbox2.
function checkbox2_Callback(hObject, eventdata, handles)
% hObject handle to checkbox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

33

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox2

Pruebasonido.fig

C. Figures and Tables

34

Figure 1 (Left). ​The finished device. Features: top enclosure with visible placement marks (white) for the
rodent’s hind limbs and nose holes through which the rat can nose poke based on stimulus and training
received. The electronics assembly is housed underneath. ​(Middle). ​The electronics assembly which
includes an amplifier and pedestals with transducer. ​(Right). ​Expanded view of the pedestal assembly
featuring an acrylic standoff, transducer, ¾” PVC column filled with concrete, and isoprene rubber as a
dampener.

Figure 2.​ Testing setup of frequency test. A microphone is used to collect the signal from the transducer.
A MATLAB code is then used to verify the output frequency matches input frequency through FFT.

35

Figure 3.​ Testing setup of displacement test. A camera is used to record the videos of a vibrating
transducer. A ruler (black) is placed aside to indicate scale.

Figure 4.​ Testing setup of load cell test. The load cell (blue) is placed on either the vibrating pedal or the
non-vibrating pedal. The force generated by the transducer is collected and analyzed.

Figure 5.​ Relationship between displacement and frequency. The vertical displacement at an amplitude
of 0.1 and 0.2 was computed at frequencies between 25 Hz and 200 Hz at 25 Hz intervals (n=3 for each
trial).

36

Figure 6.​ Relationship between displacement and voltage. A summary of the results of the uncoupled
displacement measurements of the transducer. These results are sampled at a range of different
frequencies (25-200 Hz), and highlights the statistical results of figure 3.

37

Figure 7.​ Frequency verification. Samples were taken at 50 Hz, 100 Hz, and 150 Hz (n=5 for each).
There is a positive correlation between the input frequency and the measured frequency.

Figure 8.​ Bleed between platforms. The percent bleed between the two platforms was calculated at
several frequencies (n=5 for each). There is a noticeable drop off in percent bleed between 100 Hz and
125 Hz. Error bars represent ± 1 SE.

D. BME 400 Report
Materials

A plexiglass enclosure was used to house the rodent. This allowed easy cleaning and
being able to view the animal during the procedure. Currently, the vibrational platform is 3D
printed SLA using a Form 2 3D printer. Two different sources of vibration were used (uxcell
a11101800ux0165 DC 3V 1100RPM 0.2A High Speed Mini Vibration Motor for DIY Toys,
Adafruit VIBRATION MOTOR 11000 RPM 5VDC) [8, 9]. A rubber adhesive pad covers the
platform cutouts and provides adhesion for the platform. Future iterations of this prototype will
ensure material is both waterproof and easy to sanitize.

Methods
Circuit and Arduino code has been developed to control the motor such that it can

generate a vibration at desired frequency and amplitude. The motor itself is attached to the
bottom of the platform. Two of such platforms are integrated into the bottom of a cage, which is
large enough to hold one rat. The whole cage and the platforms are made from waterproof
materials as the rats may urinate during the experiments.

38

Experimental Setup

The final prototype consists of a plexiglass rodent enclosure with two platform cut-outs
designed to accommodate the hindlimbs of a rearing rat. The cut-ous are covered with a foam
adhesive, underneath which the platform is attached to. The platform itself houses both the
linear resonant actuator (LRA) and the eccentric rotating mass (ERM) motor (Figure 8.)

Figure 1. ​Rodent enclosure from various angles and enlargements. ​(A) ​The rodent enclosure in a
front-on view. Visible are the two white foam covered cutouts on which a rodent will be trained to place
its hind limbs while rearing (1.), and the platform housing the vibrational motors (2.) An Arduino
microcontroller controls the vibrational frequency of the motors (3.) ​(B)​ Angled view displaying the
cut-outs (1.) and motor(2.) ​(C)​ Detailed front view featuring the platform housing the vibrational motors
(2.), the ERM cylindrical motor(4.) and the LRA coin motor (5).

39

Figure 2. ​Close-up of the platform housing the vibrational motors. The ERM cylindrical motor (1.) is
nestled in the middle of the platform. The off-centered rotating mass responsible for the vibrations is
visible from this angle. The LRA coin motor (2.) is attached to the bottom of the platform. Together these
motors cover the prescribed frequency range.

Testing
An experiment was conducted to determine the response of the LRA motor and ERM

motor under different conditions. Each of the two motors were placed into three different
positions with an accelerometer (Figure 8). The direct placement configuration was used to
determine the motor’s response to different voltages, since there may be discrepancies in actual
performance from the datasheet. The dampened configuration was used to determine what the
rodent might perceive from the leg being stimulated by the motor during use of the cage. The
off-target configuration was used to determine what the rodent might perceive from the leg not
being stimulated during use of the cage.

Figure 3​. The configurations of the accelerometer (blue) and the motor (beige) used in our experiment. (A) The direct
placement configuration. (B) The dampened configuration. There is a foam pad (white) separating the accelerometer

and the motor. (C) The off-target stimulation configuration. The motor is placed on the adjacent foam pad to the
accelerometer.

In each configuration, a motor was vibrated at various voltages. The voltages tested in

each motor spanned the range specified in the motor’s datasheet at 0.5 V increments. Each

40

motor was powered using a PWM signal with a max voltage of 5 V. Thus, a 2.5 V signal in this
experiment corresponds to a duty cycle of 50% and a 3.5 V signal corresponds to a 70% duty
cycle.

Data was collected from the accelerometer using an Arduino UNO and was sent to
MATLAB for processing (Appendix B). First, the motor was powered and 128 samples of the
acceleration vector were collected from the accelerometer at 1 kHz. This number of samples
was chosen due to memory limitations of the Arduino UNO. Second, the data was imported to
MATLAB. Third, the magnitude of the acceleration vector was computed. Fourth, the Fourier
transform of the accelerometer magnitude was computed using the MATLAB fast Fourier
transform [7]. This method was used rather than sending the data one sample at a time
because literature suggests that our method leads to more accurate data [10].

Results
Testing demonstrated when the motors are directly placed on the accelerometer, the

measured frequency generated by ERM (60 Hz, 175 Hz) is slightly higher than that generated
by LRA (50 Hz, 150 Hz). When the motors are damped by the platform, the range of
frequencies generated by both motors shrinks (100-150 Hz for LRA and 75-125 Hz for ERM).
Moreover, both of the motors show an acceptable off-target vibration with an amplitude less
than 25% of the amplitude obtained from the damped motor test.

Table 1. ​The results from the Fourier Transforms run on the different different motors at the different
locations. The motor dampened by platform results are the most relevant to the frequencies that will be
transferred to the legs of the rats during testing. The results from the Transforms show that the motors
can achieve frequencies of approximately 75 Hz and 100 - 150 Hz.

Beside frequency, another important factor that describes how an object vibrates is

amplitude. In this case, the amplitude of device’s vibration is directly correlated to the force
generated by the Micro Vibration Motor with a eccentric disk. Since the inner structure of LRA is
not accessible, only the force generated by ERM can be calculated, using the formula below:

 m r ωF = 2

In this formula, m is mass of eccentric disk, obtained from a micro scale. r is the radius

of the orbit that the eccentric disk spins on. This is obtained by calculating the distance between
the spinning rod and the center of mass of the eccentric disk. ω is the angular velocity

41

calculated from the motor’s speed in round per second. Finally, F is for force generated by the
motor and the result is 3.73e-4 N.

With force generated by the motor, the acceleration of the device can be determined
using Newton’s Second Law of Motion, shown below:

 m aF =

F is the generated force and m is the weight of whole device, including the motor and a

pedal. The weight of these to parts can be obtained using a micro scale. The calculated
acceleration of the device is 0.02243 m/s^2, which is 2.289e-3 G.

Discussion
Engaging a rodent by applying a vibrational stimulus is a far more humane method of

stimulation than subjecting the animal to a painful stimulus. Conventionally, rodents have been
stimulated by the use of heat, cold or electric shock. The current prototype emits vibrations at
75, 100 and 125 Hz. The amplitude at these vibrational frequencies is limited by the weight of
the platform. Furthermore, the amplitude in an ERM motor is coupled to the rotational velocity. It
would be beneficial to create a device that can overcome these limitations to fully explore the
parameter space of both frequency and amplitude in vibrotactile stimulation. At the date of
publication no known studies exist examining frequency and amplitude independarly as a
method for hindlimb somatosensation in rodents. Given these limitations, such a device, would
lead to novel findings and help further research in multiple fields. This information would
additionally benefit the project by identifying ideal stimulation parameters, as well as establish
threshold parameters. Threshold parameters will be needed to ensure that the stimulation at
one site does not cause off-target stimulation and/or perception at an adjacent site.

Currently, our data is only preliminary. A greater sample size will be needed to establish
confidence intervals for the frequencies and amplitudes the device can produce. Additionally,
the statistical power of the experiment should, by definition, be calculated prior to engaging in
further data collection to ensure our tests correctly reject the statistical null hypothesis which
states that vibrational frequencies are the same at various voltages.

Future work will include performing animal testing with our cage. The rats will be trained
to position itself with one foot standing on one platform and one foot on the other. The will be 3
holes on the side of the cage. The rats will be trained to use these holes to tell whether they feel
the vibration and which foot. If they feel the vibration through their left foot, they will put their
nose into the left hole, and right hole for right foot. If the rat is not sure or feel nothing, they will
put their noses into the middle hole. Researchers can use this method to determine the function
of the reconnected sciatic nerve of the rats.

42

References
[1] E. Fernandez ​et al.​, “Effects of L-carnitine, L-acetylcarnitine and gangliosides on the

regeneration of the transected sciatic nerve in rats,” ​Neurol. Res.​, vol. 11, no. 1, pp. 57–62,
Mar. 1989.

[2] A. S. P. Varejão, P. Melo-Pinto, M. F. Meek, V. M. Filipe, and J. Bulas-Cruz, “Methods for
the experimental functional assessment of rat sciatic nerve regeneration,” ​Neurol. Res.​, vol.
26, no. 2, pp. 186–194, Mar. 2004.

[3] L. B. Dahlin, “Techniques of peripheral nerve repair,” ​Scand. J. Surg. SJS Off. Organ Finn.
Surg. Soc. Scand. Surg. Soc.​, vol. 97, no. 4, pp. 310–316, 2008.

[4] S. Rotshenker, “Wallerian degeneration: the innate-immune response to traumatic nerve
injury,” ​J. Neuroinflammation​, vol. 8, p. 109, Aug. 2011.

[5] E. A. Huebner and S. M. Strittmatter, “Axon Regeneration in the Peripheral and Central
Nervous Systems,” ​Results Probl. Cell Differ.​, vol. 48, pp. 339–351, 2009.

[6] J. K. Terzis, B. Faibisoff, and B. Williams, “The nerve gap: suture under tension vs. graft.,”
Plast. Reconstr. Surg.​, vol. 56, no. 2, pp. 166–170, 1975.

[7] S. Yeomans, “Sciatic Nerve and Sciatica,” ​Spine-health​. [Online]. Available:
https://www.spine-health.com/conditions/sciatica/sciatic-nerve-and-sciatica. [Accessed:
28-Apr-2019].

[8] J. R. Deuis, L. S. Dvorakova, and I. Vetter, “Methods Used to Evaluate Pain Behaviors in
Rodents,” ​Front. Mol. Neurosci.​, vol. 10, 2017.

[9] R. T. Green, “Threshold for electric shock of the laboratory rat,” ​Anim. Behav.​, vol. 6, no. 1,
pp. 72–76, Jan. 1958.

[10]D. Purves ​et al.​, Eds., ​Neuroscience​, 6 edition. New York: Sinauer Associates is an imprint
of Oxford University Press, 2017.

[11]A. M. Garner, J. N. Norton, W. L. Kinard, G. E. Kissling, and R. P. Reynolds,
“Vibration-induced Behavioral Responses and Response Threshold in Female C57BL/6
Mice,” ​J. Am. Assoc. Lab. Anim. Sci. JAALAS​, vol. 57, no. 5, pp. 447–455, Sep. 2018.

[12]J. N. Norton, W. L. Kinard, and R. P. Reynolds, “Comparative Vibration Levels Perceived
Among Species in a Laboratory Animal Facility,” ​J. Am. Assoc. Lab. Anim. Sci. JAALAS​, vol.
50, no. 5, pp. 653–659, Sep. 2011.

[13]K. N. Rabey, Y. Li, J. N. Norton, R. P. Reynolds, and D. Schmitt, “Vibrating Frequency
Thresholds in Mice and Rats: Implications for the Effects of Vibrations on Animal Health,”
Ann. Biomed. Eng.​, vol. 43, no. 8, pp. 1957–1964, Aug. 2015.

[14]R. R. Fay, ​Hearing in Vertebrates: A Psychophysics Databook​. Winnetka, Ill: Hill-Fay Assoc,
1988.

[15]“Buyers Guide - Exciters.” [Online]. Available:
https://www.parts-express.com/resources-buyers-guide-exciters. [Accessed: 28-Apr-2019].

[16]Parts Express, “‘Dayton Audio DTA-1 Class D AC/DC Battery Powered Mini Amplifier 15
WPC’ from www.parts-express.com!” [Online]. Available:
https://www.parts-express.com/dayton-audio-dta-1-class-d-ac-dc-battery-powered-mini-amp
lifier-15-wpc--300-380. [Accessed: 30-Apr-2019].

[17]Dayton Audio, “DAEX13CT-8 Coin Type 13mm Exciter 3W 8 Ohm.” [Online]. Available:
http://www.daytonaudio.com/index.php/daex13ct-8-coin-type-13mm-exciter-3w-8-ohm.html.
[Accessed: 30-Apr-2019].

[18]Vijayan, V, “Material Selection of Compliant Mechanism for Vibration Isolation,” ​Mech.

43

https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h

Mech. Eng.​, vol. 18, no. 2, pp. 121–134, 2014.
[19]“Mini Load Cell - 100g, Straight Bar (TAL221) - SEN-14727 - SparkFun Electronics.”

[Online]. Available: https://www.sparkfun.com/products/14727. [Accessed: 30-Apr-2019].
[20]“SparkFun Load Cell Amplifier - HX711 - SEN-13879 - SparkFun Electronics.” [Online].

Available: https://www.sparkfun.com/products/13879. [Accessed: 30-Apr-2019].
[21]“Load Cell Amplifier HX711 Breakout Hookup Guide - learn.sparkfun.com.” [Online].

Available:
https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide?_ga=2.
116053509.2015357144.1556677851-1375936112.1556677851. [Accessed: 30-Apr-2019].

[22]“SparkFun Triple Axis Accelerometer Breakout - ADXL335 - SEN-09269 - SparkFun
Electronics.” [Online]. Available: https://www.sparkfun.com/products/9269. [Accessed:
30-Apr-2019].

[23]A. Hjort and M. Holmberg, ​Measuring mechanical vibrations using Arduino as a slave I/O to
an EPICS control system​. 2015.

44

https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h
https://www.zotero.org/google-docs/?EoeV6h

