Fetal Radiation Shield

Team: Lena Hampson, Lauren Heinrich, Janae Lynch, Megan Skalitzky Advisor: Dr. Beth Meyerand Client: Dr. Zac Labby

Overview

Motivation

Problem Statement

Previous Work

Timeline

Logistics

Budget

Acknowledgements

Motivation

4000 patients

4000 pregnant women undergo radiation therapy in the US every year [2] Leakage & Scatter

Leakage and scatter are significant sources of radiation risk to fetus [3] Costly & Unsafe

Current measures are can be costly and usafe for patient

Problem Statement

- Create a physical barrier to protect fetus
 - Material Requirement: Lead
 - Size Requirement: \geq 5 cm thick
- Other Requirements
 - Mechanically sound
 - Easy to transport and brake
 - Accommodate various body shapes/sizes
 - Reduce fetal radiation dose by at least 50%
 - \circ Cost of fabrication/testing \leq \$10,000

Previous Work

- Lead shield
 - Cylindrical shield shape
 - Steel casing
- Dual lifting mechanism
 - Linear actuators
 - Screw jacks
- Steel frame
- Transportation system
 - Caster wheels with locking brakes
- Solidworks simulations and modeling

[Figure 2] Full assembly of the shield, lifting mechanisms, frame, and transportation system.

Lessons from Previous Work

- Lead and steel casing are safe when stationary
 - Need to perform dynamic and fatigue testin
- Monte Carlo simulations not feasible
- Reduced cost from previous semester:
 - Still over-budget
- Complicated assembly logistics

DWORKS Educational Product. For Instructional Use Only.

[Figure 3] The stress due to gravity of the lipped half-cylinder shield. Gravitational testing was performed in SolidWorks. Green arrows indicate fixed geometry. Red arrow indicates direction of gravity.

February

Conference Call with Vulcan	Choose Power Screws and Wheels		Consult Electrical Engineering Department
--------------------------------	--------------------------------------	--	---

Goal:

- Discuss manufacturing process
- Discuss areas to reduce cost of shield

Goal:

- Decide on companies
- Reduce costs

Goal:

• Further explore the electrical components

March

Final Shield Design	Create Prototype	Test Prototype at Hospital	Decide on Electrical Component

Goal:

 Move forward with computer testing Goal:

 Be able to visualize the field and identify any changes Goal:

 Confirm it fits in radiation room and storage Goal:

- Decide the best way to lower and raise the shield
- Start creating a plan to manufacture it

April

Finalize	
SolidWorks	
Design	

Discuss Final Design with Vulcan

Complete SolidWorks Testing

Final Poster and Journal

Goal:

Goal:

- Use this to complete
 SolidWork
 Simulation
- Discuss final design, timeline, and manufacturin
 - manufacturing process

Goal:

- Both dynamic and fatigue simulations
- Analyze the safety of device

Goal:

 Present final results in both a poster and journal

Logistics

- 12-week lead time on fabrication of lead shield
 - Lead casting and fabrication
 - Radiograph to check for inconsistencies
 - Painting shield "medical white"
 - Multiple locations
- Assembling of support system
 - Potentially contract this out to Vulcan
 - Installation of electrical components will possibly be contracted
- Delivery of shield assembly
 - Vulcan would deliver assembly to UW-Hospital
 - Our responsibility to off-load and transport to storage

Budget

- Total Budget: \$10,000
- Must cover shield, support/transportation system, electrical components, shipping and handling, and any consulting work

Current cost estimate:

Part	Quantity	Manufacturer	Cost Estimate 6 x \$43.99 = \$263.94	
Caster wheels	6	Caster HQ		
Power Jackscrews	2	Joyce	2 x \$1750.00 = \$3500.00	
Linear actuators	4	Progressive Automations	4 x \$315.95 = \$1263.80	
Shield	1	Vulcan Global Manufacturing Solutions	1 x \$7328.98 = \$7328.98	
Contracting	n/a	n/a	\$2,000	
Total			\$14,356.72	

Acknowledgements

Dr. Beth Meyerand, Advisor

Dr. Zachariah Labby, Client

References

- [1] "Radiation Protection For The X-Ray Technologist", 2017. [Online].
- [2] M. Stovell and C. Robert Blackwell, "501 Fetal dose from radiotherapy photon beams: Physical basis, techniques to estimate radiation dose outside of the treatment field, biological effects and professional considerations", International Journal of Radiation Oncology*Biology*Physics, vol. 39, no. 2, p. 132, 1997.
- [3] D. D. Martin; Review of Radiation Therapy in the Pregnant Cancer Patient; Clinical Obstetrics and Gynecology, Review vol. 54, no. 4, pp. 591-601, Dec 2011.

Questions?