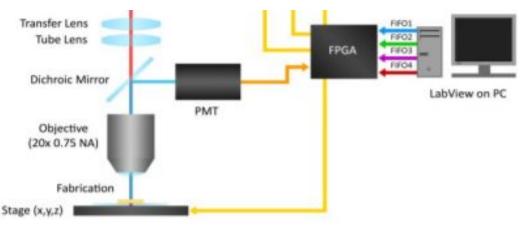


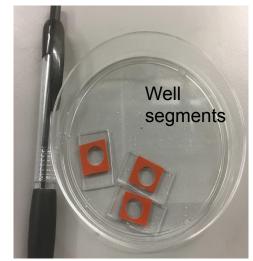
BME Design 301 Microfluidic Device

Jason Wang - Team Leader Nicholas Pauly - Communicator Bob Meuler - BSAC Kevin Koesser - BWIG Jiacomo Beckman - BPAG


Advisor- Dr. Filiz Yesilkoy February 21, 2020

Client Overview

- Studies the alterations of the ECM in cancers and connective tissue disorders
- 3D Nano/Microfabrication using modified laser rastering [1]
 - modeling of ECM



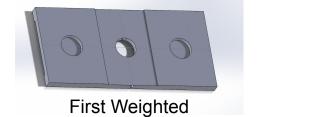
Paul Campagnola, PhD
Professor in Biomedical
Engineering at UW-Madison

Background - From Grayscale to ECM

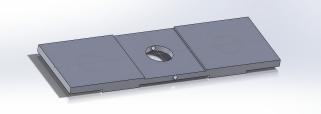
- Images are taken of sample tissue
 - converted to grayscale image
- Protein solution with photoactivator added to well
 - laminin, collagen fibronectin
- Areas of higher contrast in grayscale image are reflective to degree of polymerization

Problem Statement

Develop a mechanism that can automate the process and facilitate a more efficient production of ECM


- A filtration mechanism should be incorporated to separate any large solute particles that break off from the ECM
- The protein solution and photoactivator should be recaptured to be reused

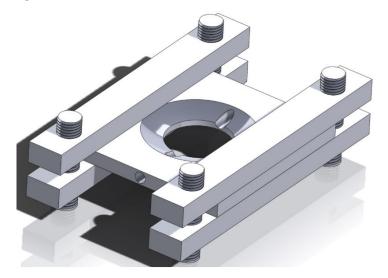
What has been accomplished thus far


Two different microfluidic chamber designs from Midwest Prototyping

- Weighted and clip designs
 - EPU 40 & SIL 30 [2]
 - Testing for protein adsorption done on each material
 - Purchased other materials:
 - Tubing, filter, pump

microfluidic design

First Clip microfluidic design


Design Idea 1 - Weights

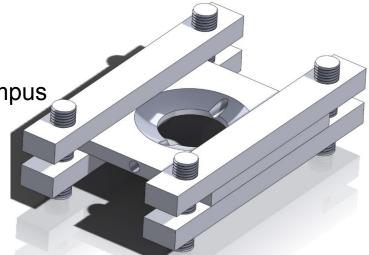
- Weight pieces would be placed along the edges
- Advantages
 - Ease of Fabrication
 - Cost
 - Ease of Use
 - Durability
- Disadvantages
 - Sealing Capabilities

Design Idea 2 - Clamp

- Weight pieces would be placed along the edges
- Advantages
 - Ease of Fabrication
 - Sealing Capabilities
 - Cost
 - Durability
- Disadvantages
 - o Ease of Use

Design Idea 3 - Magnets

- Weight pieces would be placed along the edges
- Advantages
 - Ease of Fabrication
 - Ease of Use
 - Durability
- Disadvantages
 - Sealing Capabilities
 - Cost



Design Matrix

Weight	Criteria	Weights		Clamp		Magnets	
35	Ease of Fabrication	4	28	4	28	4	28
25	Sealing Capabilities	1	5	5	25	3	15
20	Ease of Use	4	16	3	12	4	16
15	Cost	4	12	4	12	3	9
5	Durability	5	5	5	5	5	5
100	Total (100)	66		81		74	

"Final" Design

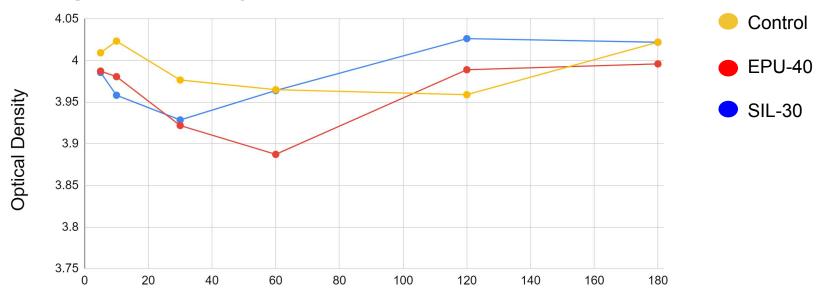
- Addresses issue of sealing hybridization chamber
- Inexpensive
- Easily fabricated
 - Majority of parts are obtainable on campus
- Dimensions: 25mm x 25 mm x 2mm

Testing

- Protein Adsorption Tests
 - Measured optical density
 - Fluorescence testing
- Future testing- pump flow rate

Spectrophotometer

96 well plate used in spectrophotometer

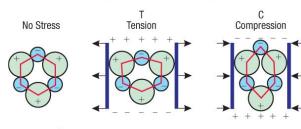

Fluorescent liquids

Fluorescent microscope

Protein Adsorption Results

Average Optical Density of SIL 30, EPU 40, and Control Over Time

Time Elapsed (minutes)


Future Work

- Buy a controller to control piezoelectric pump
 - Need modified sine wave function
 - 120-250V peak to peak to power
 - Frequency range 10-60 Hz
 - Tailor controller/pump to output ideal flow rate
 - Current option is \$1090 [3], considering others
- 3D print new microfluidic device
- Fabricate clamp
 - Using available Makerspace equipment
- Include filtration system
 - Likely post hoc
- Integrate system with Labview software

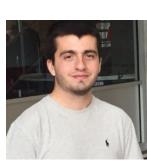
Pump bought by team

Piezoelectric Effect in Quartz

STD Wave (modified SIN Wave)

Acknowledgements

Dr. Filiz Yesilkoy, Project Advisor


Dr. John Puccinelli, BME Design Chair

Dr. Paul Campagnola, Client

Samuel Alkmin, Campagnola Lab Contact

References

- V. Ajeti, C. Lien, S. Chen, P. Su, J. Squirrell, K. Molinarolo, G. Lyons, K. Eliceiri, B. Ogle, and P. Campagnola, "Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning", *Optics Express*, vol. 21, issue 21, pp. 25346-25355, 2013.
- (2) "CLIP Materials," CLIP Materials @ Midwest Prototyping Additive Manufacturing. [Online]. Available: https://www.midwestproto.com/technologies/CLIP-Materials. [Accessed: 20-Feb-2020].
- (3) Dolomite, "Piezoelectric Pump Controller," *Dolomite Microfluidics*. [Online]. Available: https://www.dolomite-microfluidics.com/product/piezoelectric-pump-controller/. [Accessed: 19-Feb-2020].