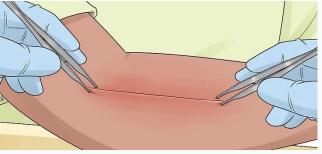


Wound Edge Approximation

February 7, 2020

Client: Dr. Charlton Advisor: Dr. Suarez-Gonzalez

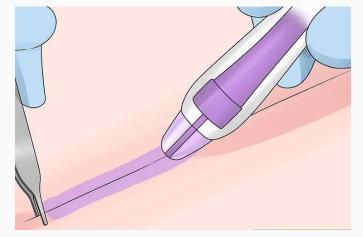
Team: Jurnee Beilke (Leader), Kelly Starykowicz (BWIG), Jack Fahy (BPAG), Isabel Erickson (BSAC), Kavya Vasan (Communicator)


Overview

- Background and Problem Statement
- Design Criteria
- Design Impact
- Current Prototype
- Future Work Fabrication and Design
- Budget/Expenditures
- Initial Testing
- Future Work Testing
- Semester Timeline

Background

- 6 million laceration cases treated each year [2]
- Wounds over 1-2 cm in size begin to splay
- Wound approximation two margins of a cut are drawn together without gaps between the edges
- Imperfect approx. can lead to scarring and poor healing



https://www.med.uottawa.ca/procedures/wc/e_treatment.htm

Problem Statement

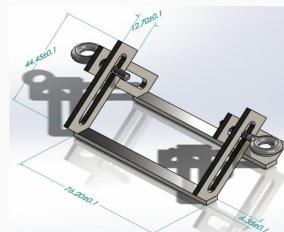
- Skin tension pulls edges of the wound apart
- Repair is difficult
 - Suturing or gluing
- Device to hold wound edges together while the wound is closed by clinician
- Device to be used with Dermabond [1]

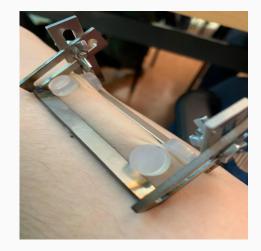
https://www.wikihow.com/Apply-Dermabond

Design Criteria

- Use on limbs and torso
- Withstand sterilization (121°C) [3]
- Stay in place during approximation
- Must not cause pain
- 350 uses on 2-5 cm wounds
- Lightweight (<230 g)
- \$300 budget

Design Impact


- Lacerations represent 10% of cases in emergency departments
 [4]
- Quick, easy method for physicians
- Reduces personnel needed for repair



https://www.piedmont.org/living-better/first-aid-101-how-to-treat-a-cut

Current Prototype

- Adhesive silicone bumpers applied on corners of wound
- Edges of device placed around bumpers
- Wound approximated and thumb screws tightened to secure device in place
- Device remains in place while wound is repaired



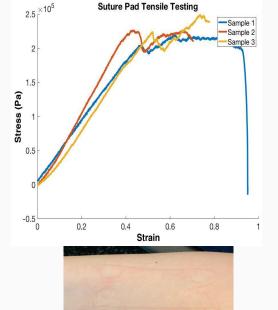
Future Work - Fabrication and Design

- Redesign fastening mechanism
 - Current mechanism is clumsy
 - Implement spring mechanism
 - Hinge rather than slide
- Eliminate bumper system
 - Enhance device's adhesion to skin
 - Geckskin
 - Double-sided tape

Budget and Expenditures

Initial Budget: \$300

Remaining Budget: \$256.93


Expense Report:

ltem	Quantity	Unit Cost	Extended Cost	
	1 Strip, 1" x 36" x			
Multipurpose Stainless Steel 304	0.09"	\$18.38	\$26.22	
GE Silicone 2+ Sealant Caulk	1	\$3.77	\$3.77	
Waterjet Cutting at Makerspace	N/A	\$2.53	\$2.53	
Sontax 96pc. 1/2" Clear Bumpers	Pack of 96	N/A	\$8.79	
Thumb Screws #6-32 x 1/2	2	\$0.39	\$0.78	
Zinc Plated Wingnuts	Pack of 6	N/A	\$0.98	
Total	\$43.07			

Initial Testing

<u>Methods</u>

- Force required for wound approximation
 - MTS tensile data of suture pad
 - Calculate force from skin deformation
- Device displacement during service
 - SkinPrep and bare skin conditions
- Skin markings after use
 - Observe skin deformations from device
- Discomfort Scale
 - \circ 0: no pain
 - 5: severe pain

<u>Results</u>

- Suture pad is not an accurate model of skin
- Insignificant displacement between conditions
- Light red markings on skin
- Minimal discomfort

Future Work - Testing

- Use a skin sample that mimics the properties of human skin
 - Skin tension forces between 6.5 and 7.8 N [5]
 - Anisotropic and viscoelastic
 - Silicone or polyurethane models [6]
- Solidworks mechanical modeling
 - Creep and stress relaxation
- Test on arms, legs, and torso
- Ease of use assessment with client

Semester Timeline

Took by Friday	February		March			April							
Task by Friday	7	14	21	28	6	13	20	27	3	10	17	24	
Research													
Device Fastener Fabrication						S P R							
Silicone/Adhesive Fabrication	0.			15		I N							
Finalize Testing Methods						G							
Order/Fabricate New						В						·	Progress Made
Skin Alternative						R E							Completed
Testing						А							
Journal Report						к	4		-	4			Deadline

Acknowledgements

Client: Dr. Charlton

Advisor: Dr. Suarez-Gonzalez

Previous Team Member: Lizzy Schmida

References

[1] Jnjmedicaldevices.com. (2019). *DERMABOND® Mini Topical Skin Adhesive | J&J Medical Devices*. [online] Available at: https://www.jnjmedicaldevices.com/en-US/product/dermabond-mini-topical-skin-adhesive [Accessed 18 Sep. 2019].

[2] Quinn, J., Polevoi, S. and Kohn, M. (2013). Traumatic lacerations: what are the risks for infection and has the 'golden period' of laceration care disappeared?. *Emergency Medicine Journal*, 31(2), pp.96-100.

[3] CDC.gov. (2008). Steam Sterilization: Guideline for Disinfection and Sterilization in Healthcare Facilities. [online] Available at: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/sterilization/steam.html.

[4] Hcup-us.ahrq.gov. (2019). [online] Available at: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb156.pdf [Accessed 10 Dec. 2019].

[5] Omar E Beidas, Jeffrey A Gusenoff, Deep and Superficial Closure, *Aesthetic Surgery Journal*, Volume 39, Issue Supplement_2, April 2019, Pages S85–S93.

[6] Dąbrowska, A., Rotaru, G., Derler, S., Spano, F., Camenzind, M., Annaheim, S., Stämpfli, R., Schmid, M. and Rossi, R. (2015). Materials used to simulate physical properties of human skin. *Skin Research and Technology*, 22(1), pp.3-14.