

Force Sensor for Rowing Biomechanics

BME 301 Clients: Dr. Jill Thein-Nissenbaum, Ms. Tricia De Souza, and Sarah Navin Advisor: Dr. John Puccinelli Simmi Kaur, Neha Kulkarni, Colin Fessenden, Allicia Moeller, Emily Wadzinski

Overview

- Problem Statement
- Background Research
- Competing Designs
- Product Design Specifications
- Preliminary Designs
- Design Matrices
- Conclusion and Future Work
- Acknowledgements
- References

Figure 1. UW-Madison rowing team. [1]

The Clients

Tricia De Souza UW Athletic Trainer [2]

Figure 3.

Jill Thein-Nissenbaum UW Athletics Physical Therapist [3]

Department of Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Figure 4. Sarah Navin PT Student Former UW Crew [4] Simmi - 3

Problem Statement

- Rowing athletes, <u>particularly women</u>, are susceptible to lower back or hip injuries
 - Asymmetric weight distributions on each leg while rowing
- Current methods
 - Studies outside of the environment
 - Real-time data is <u>hard to obtain on the water</u>
- Sensor system to collect biomechanical data from rowers' lower extremities
 - Capture load distribution during time of use in the rowboat
- User-friendly interface
 - Assess lower extremity asymmetry
 - Improve both performance and safeguarding against injuries

Background

What is sculling vs sweeping?

UW primarily races with 8 SWEEP rowers.

3. Finish Phase

Recovery Phase

Figure 5. Rowing Phases. [5]

- When rowing, most force is exerted by the leg [6]
- Having one oar can cause asymmetry in force exertion through the lower extremities based on which side the oar is placed
- The UW Madison Porter Boathouse has ergometers with only sweep rowing configuration

Competing Designs

- BioRow 2D Stretcher [7]
 - Load cells utilize strain gauges
 - Senses horizontal and vertical force components
 - Two load cells per foot
 - Too expensive, no interactive display
- Bertec Force Plate [8]
 - Load cells on each corner
 - Collects forces in all three directions
 - Designed for gait, balance, and performance analysis
 - Too large and expensive

Figure 6. BioRow 2D Stretcher. [7]

Figure 7. Bertec Force Plate. [8]

Product Design Specifications

Force Sensor/Footplate

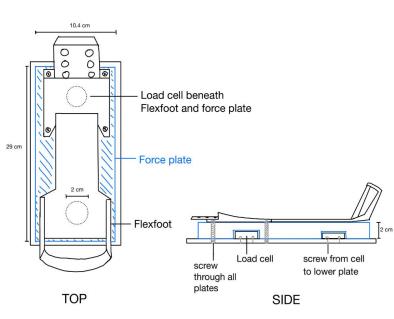
- Compatible with RowErg
- Margin of error < 5% [9]
- Adjustable to foot size
- No technique impedance

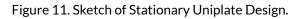
Display/User Interface

- 24 Hz frame rate [10]
- Mounted at 1.1 m height
- Clear indication of asymmetry

Figure 8. Foot stretcher on Concept2 RowErg.

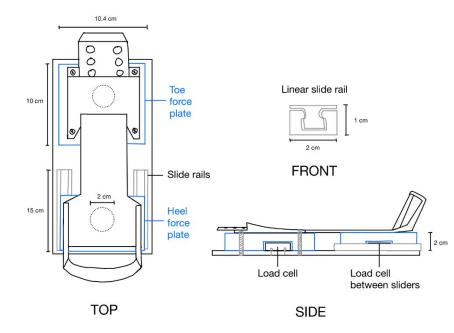
Figure 9. RowErgs in the boathouse tank.

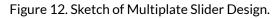

Figure 10. Concept2 RowErg. [11]



Footplate Design 1: Stationary Uniplate

- Sits between existing footplate and Flexfoot
 - Flexfoot maintains functionality
- One plate secured with screws
 - Load cells screwed underneath
- Strengths:
 - Secure load cell mounting
 - Limited modification of existing setup
- Weaknesses:
 - Load cells don't adjust to foot size
 - Signal interference from Flexfoot or shared plate





Footplate Design 2: Multiplate Slider

- 2 plates, toe plate secured with screws
- Heel plate on slider rail
 - Flexfoot adjustable on top
- Strengths:
 - Load cell can be easily adjusted to foot size
- Weaknesses:
 - Possible load cell signal interference with slider plate

Footplate Design 3: Multiplate Placer

- Two plates secured with screws
- Load cell can be picked up and moved to 1 of 3 different locations depending on foot size
- Strengths:
 - Adjustable to different foot sizes
- Weaknesses:
 - Load cell wires could be insecure in plate
 - Not as ergonomically user-friendly

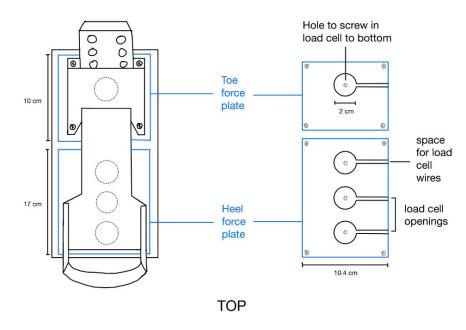


Figure 13. Sketch of Multiplate Placer Design.

Footplate Design Matrix

		Load cell screw from cell through all plates		Load cell between sliders		Hole to screw in load cell to bottom	
		Stationary Uniplate		Multi-Plate Slider		Multi-Plate Placer	
Criteria	Weight	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score
Reliability	25	5	25	4	20	2	10
Adjustability	25	2	10	5	25	3	15
Cost	20	4	16	3	12	4	16
Ease of Fabrication	20	5	20	3	12	4	16
Technique Interference	10	4	8	2	4	3	6
Sum	100	Sum	79	Sum	73	Sum	63

Display Design 1: LED Array

- No screen/monitor
- 5 LEDs connected to Arduino
- Light up when you cross an asymmetry threshold
- Strengths:
 - Inexpensive
 - Simple fabrication
 - Easy to interpret
- Weaknesses:
 - Only full foot force
 - Cannot convey complex information
 - Difficult data storage

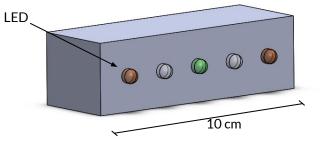


Figure 14. Solidworks representation of LED array design for the force sensor display.

Display Design 2: Arduino 5" Display

- 5" LCD display attached to Arduino Uno
- TkInter graphical user interface (GUI)
- Strengths:
 - Conveys complex information
- Weaknesses:
 - Limited GUI libraries
 - Uses 4 Arduino pins
 - Difficult data storage

Figure 15. 5" Arduino TFT display. [12]

Display Design 3: Raspberry Pi 7" Display

- 7" LCD display attached to Raspberry Pi
- Graphical user interface (GUI) real-time feedback
- Data storage: USB drive or SD card
- Strengths:
 - Conveys complex information
 - Larger screen (HDMI)
 - Easy data storage
 - Many GUI libraries
- Weaknesses:
 - Expensive
 - Must convert load cells to Raspberry Pi

Figure 16. 7" Raspberry Pi HDMI display. [13]

Figure 17. Raspberry Pi 4 Model B. [14]

Display Design Matrix

		LED Array		Arduino 5"		Raspberry Pi 7"	
		LED 0000 10 cm				7" 16:9 IPS COMPUTER MONITOR	
		Score	Weighted	Score	Weighted	Score	Weighted
Criteria	Weight	(5 max)	Score	(5 max)	Score	(5 max)	Score
User experience	35	3/5	21	4/5	28	5/5	35
Frame rate	25	5/5	25	3/5	15	5/5	25
Value of data	20	2/5	8	4/5	16	5/5	20
Ease of							
Fabrication	10	4/5	8	3/5	6	5/5	10
Cost	10	5/5	10	4/5	8	2/5	4
Sum	100	Sum	72	Sum	73	Sum	94

Final Design: Footplate + Display

- 2 stationary screwed in plates between Flexfloot and lower footplate
- Bar load cells
- Raspberry Pi Microcontroller
- Raspberry Pi 7" Display

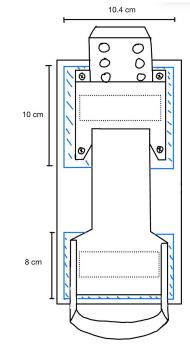


Figure 16. 7" Raspberry Pi HDMI display. [13]

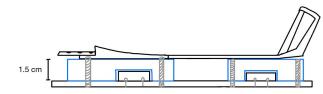


Figure 18. Sketch of final footplate design.

Future Work

- This semester:
 - Fabricate footplate
 - Display and data storage
 - GUI for toe vs heel timing and loading asymmetry
 - Visualization of stored raw data
- Future semesters:
 - Alternate load cells or force sensors
 - Integration of design into boat
 - Water proofing, wireless connection
 - Clinical testing and reliability
 - statistical analysis and validation

Acknowledgements

- Dr. Jill Thein-Nissenbaum
- Ms. Tricia De Souza
- Ms. Sarah Navin
- Dr. John Puccinelli
- Dr. Dave Bell
- UW Rowing Team Staff and Athletes

References

- [1]"Badgers announce 2019-20 women's rowing roster," Wisconsin Badgers. Accessed: Oct. 05, 2023. [Online]. Available:
 - https://uwbadgers.com/news/2019/9/20/badgers-announce-2019-20-womens-rowing-roster.aspx
- [2] "Tricia De Souza | Men's Rowing Coach | Wisconsin Badgers." Accessed: Oct. 05, 2023. [Online]. Available:
 - https://uwbadgers.com/sports/mens-rowing/roster/coaches/tricia-de-souza/731
- [3] Walworth, "Jill Thein-Nissenbaum, PT, MPT, ATC, DSc, SCS Selected for National Athletic Trainers' Association Title IX Panel UW Family Medicine," UW Family Medicine & Community Health. Accessed: Oct. 05, 2023. [Online]. Available:
 - https://www.fammed.wisc.edu/jill-thein-nissenbaum-selected-for-national-athletic-trainers-association-title-ix-panel/
- [4]"(17) Sarah Navin | LinkedIn." Accessed: Oct. 05, 2023. [Online]. Available: https://www.linkedin.com/in/sarah-navin-915862179/
- [5]S, Arumugam, et al. "Rowing Injuries in Elite Athletes: A Review of Incidence with Risk Factors and the Role of Biomechanics in Its Management." Indian Journal of Orthopaedics, vol. 54, no. 3, Jan. 2020. pubmed.ncbi.nlm.nih.gov, https://doi.org/10.1007/s43465-020-00044-3
- [6] S. Arumugam, P. Ayyadurai, S. Perumal, G. Janani, S. Dhillon, and K. A. Thiagarajan, "Rowing Injuries in Elite Athletes: A Review of Incidence with Risk Factors and the Role of Biomechanics in Its Management," *Indian J Orthop*, vol. 54, no. 3, pp. 246–255, Jan. 2020, doi: 10.1007/s43465-020-00044-3.
- [7] "2D_Stretcher," Biorow. https://biorow.com/index.php?route=product/product&path=61_115&product_id=109 (accessed Sep. 21, 2023).
- [8] "Force Plates," Bertec. https://www.bertec.com/products/force-plates (accessed Sep. 13, 2023).
- [9] Q. Liu, Y. Dai, M. Li, B. Yao, Y. Xin and J. Zhang, "Real-time processing of force sensor signals based on LSTM-RNN," 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 2022, pp. 167-171, doi: 10.1109/ROBIO55434.2022.10011703
- [10] S. Allison, Y. Fujii, and L. M. Wilcox, "Effects of Motion Picture Frame Rate on Material and Texture Appearance," IEEE Transactions on Broadcasting, vol. 67, no. 2, pp. 360–371, Jun. 2021, doi: 10.1109/TBC.2020.3028276.
- [11] "RowErg," Concept2. Accessed: Oct. 05, 2023. [Online]. Available: https://www.concept2.com/indoor-rowers/concept2-rowerg
- [12] "TFT 5 inch LCD Display Module w/Controller Board Serial I2C RA8875." Accessed: Feb. 15, 2024. [Online]. Available:
 - https://www.buydisplay.com/tft-5-inch-lcd-display-module-controller-board-serial-i2c-ra8875
- [13] "Amazon.com: HMTECH 7 Inch Raspberry Pi Screen 800x480 HDMI Portable Monitor IPS LCD Display for 4/3/2/Zero/B/B+ Win11/10/8/7 (Non-Touch): Electronics." Accessed: Feb. 15, 2024. [Online]. Available:

https://www.amazon.com/HMTECH-Raspberry-Pi-Monitor-Non-Touch/dp/B09MFNLRQQ/ref=sr_1_19?dib=eyJ2ljoiMSJ9.JljCE6ZRSG1UmXHLKVQsTOSOmjl2S16fBwa wlM1SDQRNVtbzmzl-6l7jyv2WHEojn4_1fbdMrEjKJ2N6DlsOS1S_Odm7h1-hBHR_KRP25WLqzWjlOatBBV7izS9VySslppkzQ4jryYsL0anQ2avrjYf9gJTRyXicPuQSfz9uBG 2eun_A0KELnkxx9iVoREpdLerDFL5RI9ThR3gxpcvZLfQ9YadTlFqWjRwGeqxuUf8.kQ79bh655y4aHZHnCJ-wXuJp5K62rAR-7L7UOblNRmo&dib_tag=se&keywords=raspb erry%2Bpi%2Bscreen&qid=1707866592&sr=8-19&th=1

[14] R. P. Ltd, "Buy a Raspberry Pi 4 Model B," Raspberry Pi. Accessed: Feb. 15, 2024. [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

Questions?

