Design of a Force-Controlled Cartilage Bioreactor

FC Bioreactor
ME 352 | Final Presentation

Agenda

```
Introduction
    Motivation
    Initial Problem Statement
    Guiding Research
    Client Need and Design Specifications
```

 Final Design
 Housing
 Actuation
 Conclusions and Recommendations for Future Work

Introduction

Motivation
Initial Problem Statement
Guiding Research
Client Need and Design Specifications

A look into the global impact and background of osteoarthritis (OA)

Osteoarthritis (OA) impacts 7% of the global population.

More than 22% of adults older than 40 are estimated to have knee OA.

The mechanisms underlying OA disease progression remain largely unknown

Depiction of cartilage degradation in knee OA.

Cartilage disease state is mechanically mediated

Mechanical loading has been implicated in metabolic dysregulation, which in turn plays a significant role in OA progression.

The long-term metabolic response of cartilage to loading has not been characterized

Walsh, S. K., Skala, M. C. \& Henak, C. R. Real-time optical redox imaging of cartilage metabolic response to mechanical loading. Osteoarthritis and Cartilage 27, 1841-1850 (2019).

The Henak Lab has characterized the metabolic response to mechanical loading on short timescales.

To acquire the full history of how mechanical loading can induce OA, greater timescales must be investigated

The Henak Lab investigates the relationship between cartilage metabolism and disease state

To research the link between long-term mechanical loading and cartilage metabolic balance, Dr. Henak has requested a device capable of applying cyclic loading* to a cartilage explant culture over several days or weeks.

[^0]
Industry and literature guided work

Not relevant - displacement-controlled or fail to apply uniaxial stress

Literature

Lujan, T. J. et al. A novel bioreactor for the dynamic stimulation and mechanical evaluation of multiple tissueengineered constructs. Tissue Eng Part C Methods 17, 367-374 (2011).
Provided a force-controlled displacement - informed design

Client need was directly translated to design specifications

Final Design

Overview
Housing
Actuation

Overview

Wall Panels
Acrylic

Compressive Interface
PTFE
Sample Tray
PLA

Alignment
drylin Q flange
bearing

Actuation
Thorlabs Voice Coil
Actuators (VC-125C)
Base Module
PLA

Housing | Base

Material: PLA

Module Purpose: Secure and fasten bioreactor
 profile and is housed within the base.

Housing | Alignment \& Sample Tray

Material: BioMed Clear (Mating Components) \& Anodized Aluminum; PLA
Module Purpose: Align actuation, prevent rotation \& shearing, and link actuation to sample compression.
e with 35 \qquad
[mm] sample dish

Final Presentation | Design

Housing | Compressive Lid

Material: Acrylic (Laser-Cut) \& PTFE
Module Purpose: Compress cartilage samples.

Minimum F.O.S. of 3.3 at Max Loading Condition (Maximum Normal Stress Failure Criterion)

Actuation | Voice Coil Actuators (VCA)

Product: ThorLabs VC125C/M

$F=q v \times B$

Lorenz force equation

Image: ThorLabs

Force Constant
Travel
12.4 N/A

Req'd Duty Cycle 50\%
Max Operating Temp 230F/110C

Actuation | Circuitry

Circuitry and electronics to power and control our actuators

Criterion	PCB	H-Bridge	Transistor
Functionality (15)	$1(3)$	$5(15)$	$5(15)$
Ease of Use (10)	$2(4)$	$3(6)$	$4(8)$
Space (10)	$2(4)$	$3(6)$	$5(10)$
Price (5)	$5(5)$	$1(1)$	$1(1)$
Total (40)	$\mathbf{1 6}$	$\mathbf{3 0}$	$\mathbf{3 4}$

Final Presentation | Design

Arduino and power supply settings control force output

Actuation | Circuitry

Actuation | Circuitry Testing

Load cell testing to validate the actuator to our design specifications

Correct, desired force (i.e., 5.5 N)?
Consistent force profile over time?
Overshoot?

Force profile is relatively constant over time

Final Presentation | Design

Actuation | Circuitry Testing

Quantifying percent overshoot from our target value of 5.5 N

Overshoot	0.5 Hz	1 Hz	2 Hz
Avg.	11.44%	2.12%	9.84%
Std. Dev.	9.14%	4.52%	14.65%
Max	34.58%	72.78%	99.51%

Conclusions and Recommendations for Future Work

Specification Validation

Average force output 5-6 N

Biocompatible PTFE interface

Force-controlled

Triangle-like force profile

- Smaller than $20 \times 21 \times 25 \mathrm{in}^{3}$
- Can be wiped down with ethanol
- Materials functional at 37C

Final Cost: \$730.22
Scaled up to six samples: \$3777.72

Conclusions \& Future Work

Designed and built a 1D actuator and circuit system to specifications

Built a housing prototype that can be

 used for experimentation
Next Steps

1. Test the unit in an experimental setting with full assembly
2. If testing goes well, order and print the components to scale up the bioreactor to include remaining samples
3. Machine the housing out of aluminum (hire TeamLab staff)

Acknowledgements

Our ME faculty advisor \& client, Dr. Corinne Henak
Our BME faculty advisor, Dr. Paul Campagnola
Our TA, Patrick Dills

Thank you!
Questions are now welcome.

References

1) Yao, Q. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Sig Transduct Target Ther 8, 1-31 (2023).
2) Mohd Yunus, M. H., Lee, Y., Nordin, A., Chua, K. H. \& Bt Hj Idrus, R. Remodeling Osteoarthritic Articular Cartilage under Hypoxic Conditions. International Journal of Molecular Sciences 23, 5356 (2022).
3) Walsh, S. K., Skala, M. C. \& Henak, C. R. Real-time optical redox imaging of cartilage metabolic response to mechanical loading. Osteoarthritis and Cartilage 27, 1841-1850 (2019).
4) "Thorlabs - VC125C/M Voice Coil Actuator, 12.7 mm Travel, SM2 External Thread, Metric," www.thorlabs.com.

Low-to-no friction on contacting pillar surface

Linear actuation applying ${ }^{20 \%}$ strain to $6 \mathrm{~mm} \times 2 \mathrm{~mm}$ (diameter x height) cartilage samples

Constant force, not necessarily constant strain, applied across all samples

Device must be capable of providing a variety of force profiles

Incubator-compatible

Specification description	Target	Unit	Test method	Rank	Met
Category 1: Device Function					
Device to apply \& control linear actuation with controlled force capable of actuating compression mechanism	>6	N	Validate manufacturer specifications with testing	Must	MET
Induces 20\% strain in (idealized) cartilage samples via uniaxial compressive stress	0.2	mm/mm	Use in-device load cell to determine deformation	Must	MET (via theoretical calculation and relation of force output)
Sufficient device actuation to allow for removal of sample dish	10	mm	attempt removal of sample dish	Mus	MET
Low-friction compression/interface with cartilage sample	0.1	-- (coefficient of friction)	Manufacturer Specifications [19], [20]	Must	MET

Category 2: Incubator and environment

Fit within incubator	$(20 \times 21 \times 25)$	inch	place fully fabricated box into incubator / measure	Must	MET
Able to withstand laboratory-grade sanitation procedures		---	Review of individual electronic technical specifications prior to use	Must	MET (ethanol)
Electronic components of actuator withstand incubator's simulated in-vivo environment		---	Review of individual electronic technical specifications prior to use	Must	MET
Cords of electronic components may be wired to external power sources		---	review of cord diameter and quantity	Mus	MET
Category 3: Additional Functions					
Modular compressive pillar attachment (i.e., to allow for $6,12,24$, etc. well plates to be used)		---	N/A	Nice-to-have	MET
Modular compressive pillars that are different shapes (e.g., indentors)		---	validate that the actuator applies the same force to the samples	Nice-to-have	NOT MET

[^0]: *Due to the poroelastic properties of cartilage, this loading must be force-controlled to avoid sample lift-off.

