Knee Arthroscopy Manikin

Client:	Corinne Henak	
Consultants	Corinne Henak, Russ Johnson	
Team:	Shrey Ramesh (leader)	Delaney Reindl (leader)
	Jack Thurk (accountant)	Connor Dokken (communicator)
	Sierra Reschke (admin)	Rachel Dallet (admin)

Status

<u>Report Date:</u> 02/29/2024 <u>Next Milestone:</u> Working Prototype <u>Deadline:</u> 03/01/2024 <u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Important aspects of this past week involved progressing each sub-section of the design towards the testing phase as well as attending/giving individual presentations detailing individual contributions to the project thus far. For the enclosure team, PE film bags were ordered for the material enclosure aspect of the design. A flow rate sensor was ordered and the enclosure and bone models were updated, with the enclosure being reprinted. For the pump team, the reservoir box was fabricated, and the second half of the tubing/pump setup (from the outlet of enclosure/inlet of reservoir) was created. The bone team ordered new wire for the cartilage-bone attachment mechanism, and a stress analysis of the enclosure FE model was initiated. Going forward, the entire team intends to complete the first assembly of the model to begin the testing phase of the project.

New Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		
After asking clarifying	Sierra and I ran into some issues running a	RD	4 hr
questions, retry the stress	stress analysis that are listed in the technical		
analysis.	section below. Clarify with Dr. Henak at the		
	meeting and run it again.		

Experiment with new wire	Some group members are going to Home	RD	1.5 hr
-r	Depot to test out some new wire. Once we buy		
	that, I need to see how easily it can bend		
	compared to the last wire.		
Work on stress analysis	Ask Dr. Henak about the issues Rachel and I	SGR	3 hr
	ran into with conducing the stress analysis on		
	the enclosure. Import the new model and try to		
	run the analysis again based on feedback		
	received.		
Update attachment	Work with the team to test and order a thinner	SGR	2 hr
mechanism wire	wire. Once it arrives, work to implement the		
	attachment mechanism with the new wire		
Assist with full prototype	Continue working with the enclosure and	SGR	1 hr
assembly	pump teams to make sure we are all on the		
	same page and begin to start thinking about		
	assembling a full prototype and conducting		
	tests.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Assemble complete	Assemble the enclosure using the plastic bag,	SKR	3 hrs
enclosure	silicone, and hose clamps. Fill with water to		
	determine points of potential leakage and		
	brainstorm solutions		
Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hrs
the reservoir	how the enclosure handles fluid flow.		
Help with complete	Assemble the duct clamps, press-to-close bag,	DR	3 hrs
enclosure assembly	and silicone along with the frame as the first		
	enclosure. Test using water to determine if the		
	assembly prevents fluid leakage.		
Finalize material	Determine material enclosure plan for	DR	3 hrs
enclosure plan	assembly.		

Ритр Теат

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Test all components together with enclosure team	Check the reservoir for leakage and put together inlet/outlet/bubbler tubes using suction cup clamps. Test fluid flow rate sensor with pump to see if it is a suitable replacement for pressure gauge (pending shipping time). Test the seal of the ports on the enclosure and assist Shrey with the enclosure testing as necassary, and if all is going well test the	CD	4 hr
	entire system except bones/live cartilage.		
Test current bubbler with dissolved oxygen sensor and resivoir	If possible (or worthwhile) test the current bubbler and reservoir with Nitrogen gas and dissolved oxygen sensor to determine whether or not the current bubbler design can effectively lower dissolved oxygen concentration in the selected reservoir volume.	CD	2 hr
Test the reservoir with nitrogen and the dissolved oxygen sensor.	Now that the reservoir has been fabricated, the bubbler will be fastened in a more permanent way to the bottom of the reservoir. Once fastened, the bubbler and reservoir should be tested with the Nitrogen source and Oxygen sensor to make sure that all runs well.	JT	3 hr
Seal ports to prevent leaks	Once the whole pump system is put together and even tested with the enclosure, sealant should be applied to the ports and connection points to help prevent leaks as well as prevent possible vibrations from loosening the port connections. The sealant that would be used will be biocompatible and would be suitable for sealing connection points between the pressure gauge and T-bracket. However, sealant will not be ordered until the new fluid flow rate sensor Connor ordered has been shipped and tested.	JT	3 hr

Old Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est. Time
Update BME and ME websites	Add the progress reports to both the ME and BME websites. Update the project status as well.	RD	0.5 hr
Give individual presentation	Present to peers and TAs on Wednesday at 4pm. Go through my contributions to the project.	RD	.5 hr
Perform stress analysis on the enclosure system	Load the CAD into FEBio and perform a stress analysis on it given modulus of elasticity and young's modulus.	RD	3 hr
Order new wire	Talk to Jack and Dr. Henak about our budget. Then either order or obtain new wire from the makerspace. Determine if it's bendable.	RD	2 hr
Implement attachment mechanism changes	Continue working to update the wire, bone models, and sample attachment mechanism based on the main takeaways from testing.	SGR	2 hr
Stress analysis of enclosure	Utilize FEBio to perform a stress analysis on the enclosure FE model and analyze the results.	SGR	2.5 hr
Experiment with and order new wire	Experiment with different wires of different thicknesses to replace the current wire in our attachment mechanism as it is too stiff.	SGR	1 hr
Attend individual presentation.	Present my individual presentation on Wednesday, February 21st and review the presentations of my peers.	SGR	0.5 hr

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time

Order PE film bags	Determine necessary dimensions for the	DR	0.5 hr
	press-to-close bags and place an order through		
	Josh.		
Attend Individual	Give presentation of individual contributions	DR	0.75 hr
Presentation	(Feb 21) thus far and peer review three other		
	groups.		
Research other	Determine if the biocompatible caulk is for	DR	1.25 hr
biocompatible caulk	sure the material we want to go forward with		
<mark>options</mark>	and find other options and submit the order		
	form through Josh.		
Develop enclosure	Draw out a material enclosure plan to	DR	2.5 hr
attachment plan	highlight where each material will go.		
Order flow rate sensor for	Request a free sample of the fluid flow rate	SKR	.5 hr
Pump team	sensor from Renesas		
Reprint Enclosure	Redesign and reprint enclosure based on third	SKR	3 hr
	iteration of testing		
Print Updated Bones	Go the the Makerspace and print the updated	SKR	1 hr
	tibia and femur models		
Assemble Full Enclosure	Using previous enclosure prints and silicone,	SKR	2 hr
	assemble a full enclosure to test resistance to		
	leaks		

Ритр Теат

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Fabricate the reservoir box	The plastic was cut but the bonding agent is still being delivered. Once delivered, the bonding agent will be applied to create the box and test it for potential leaks and durability. UPDATE: The bonding agent still has not arrived yet	JT	3 hr
Order various materials needed for project	This week, a lot of time was spent waiting to see if there was indeed a funding string that we would be able to use to order from external vendors. Now that that is cleared up, I will	JT	1.5 hr

	place various orders for things needed for our		
	project such as clamps for the enclosure team.		
Create second half of	To complete the closed loop for fluid flow, the	JT	1.5
medical tube and pump	tubing from the enclosure to the reservoir		
setup (from the outlet of	needs to be made. The system will look very		
the enclosure to the inlet	similar and will require another pump system		
of the reservoir)	which Shrey is able to find and provide.		
Finish fabricating	Still waiting for bonding agent to be shipped,	CD	3 hr
reservoir	progress was checked with our TA today.		
	Once arrived the reservoir will be assembled.		
	Need to fabricate piece to hold dissolved		
	oxygen sensor as well.		
Re-evaluate/design	Decide on a final bubbler attachment and	CD	2 hr
bubbler attachments	create final prototype, or order selected		
	bubbler stone		
Research flow rate	Research whether or not the acquired flow rate	CD	1 hr
sensors	sensor is compatible with liquids, or if the		
	company offers a similar product that is		
	designed for use with liquids.		

Technical Section

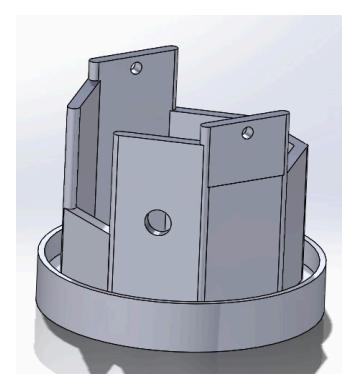
Give individual	Present to peers and TAs on Wednesday at	RD	.5 hr
presentation	4pm. Go through my contributions to the		
	project.		

On Wednesday, I gave my individual presentation. I went over my contributions on the bone team this semester. It all went very smoothly with not a lot of questions from the audience.

Order new wire	Talk to Jack and Dr. Henak about our budget.	RD	2 hr
	Then either order or obtain new wire from the		
	makerspace. Determine if it's bendable.		

The budget was worked out. Some team members will be going to Home Depot to explore wire options.

Perform stress analysis on	Load the CAD into FEBio and perform a	RD	3 hr
the enclosure system	stress analysis on it given modulus of		
	elasticity and young's modulus.		


Author: Rachel Dallet and Sierra Reschke

Order flow rate sensor for	Request a free sample of the fluid flow rate	SKR	.5 hr
Pump team	sensor from Renesas		

Completed

Reprint Enclosure	Redesign and reprint enclosure based on third	SKR	3 hr
	iteration of testing		

The enclosure has been printed as of Thursday and will be available for feedback on Friday during the group meeting. Since our last meeting there have been two prints with design changes.

Print Updated Bones	Go the the Makerspace and print the updated	SKR	1 hr
	tibia and femur models		

The updated bone model is being printed as of Thursday. I opted for PLA as it is guaranteed to be biocompatible unlike FormLabs Biomed Clear.

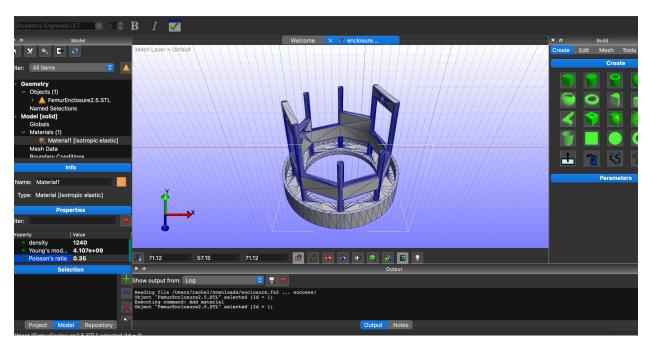
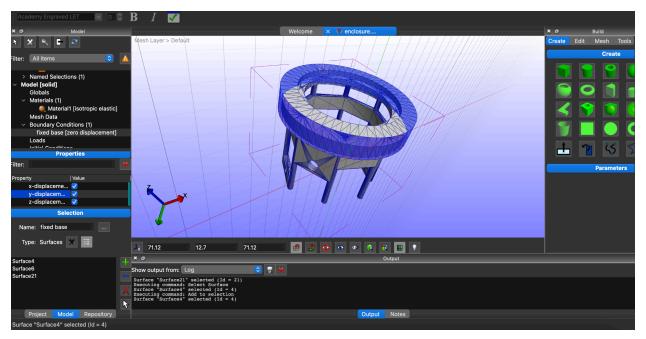
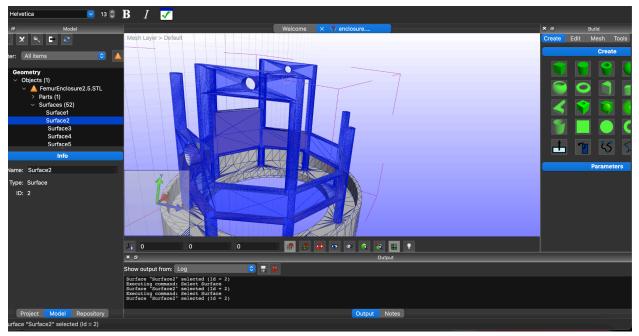




Figure 1: Material properties

Figure 2: Fixed boundary

Figure 3: Issue applying load

Sierra and I attempted to run an FE analysis in FEBio. The above images are screenshots from our process. The first issue we had was an inability to mesh. Everytime we previously did FE analysis in classes, a mesh was necessary. We weren't sure how to do that with an STL import so we converted the file to a STEP and couldn't load it into FEBio. We proceeded with the STL without the mesh. We looked up the mechanical properties of PLA and inserted those as the

material. We were wondering for material selection, if isotropic elastic should be used. We then attempted to apply a force at the hinges. However, the way Shrey made the part was as a single piece as highlighted in Figure 3. We will run through these issues at the next meeting!

Author: Sierra Reschke

Implement attachment	Continue working to update the wire, bone	SGR	2 hr
mechanism changes	models, and sample attachment mechanism		
	based on the main takeaways from testing.		

The bone models have been updated to include a gird for the smaller samples to sit on and more holes around the exterior for attachment via the wire. We will be testing our attachment mechanism and models again once we acquire thinner wire and can schedule another time to go into Dr. Henak's lab.

Attend individual	Present my individual presentation on	SGR	0.5 hr
presentation.	Wednesday, February 21st and review the		
	presentations of my peers.		

I attended my individual presentation time a lot and successfully gave my presentation to my peers. I also listened to the presentations of other groups and gave both positive and constructive feedback.

Research flow rate	Research whether or not the acquired flow rate	CD	1 hr
sensors	sensor is compatible with liquids, or if the		
	company offers a similar product that is		
	designed for use with liquids.		

Product offerings by Renesas were evaluated, however, they had limited options for liquid compatible flow rate sensors. The compatible option was chosen and a free sample was requested. The request was confirmed and tracking info will be provided soon.

Finish fabricating	Still waiting for bonding agent to be shipped,	CD	3 hr
reservoir	progress was checked with our TA today.		
	Once arrived the reservoir will be assembled.		

Need to fabricate piece to hold dissolved	
oxygen sensor as well.	

The reservoir was fully assembled with the bonding agent this week.

Re-evaluate/design	Decide on a final bubbler attachment and	CD	2 hr
bubbler attachments	create final prototype, or order selected		
	bubbler stone		

A suitable and reasonably priced bubbler stone was with a ¹/₄" barb was not found online, so a new bubbler similar to the bubbler tube design has been fabricated.

Fabricate the reservoir	The plastic was cut but the bonding agent is	JT	3 hr
box	still being delivered. Once delivered, the		
	bonding agent will be applied to create the		
	box and test it for potential leaks and		
	durability. UPDATE: The bonding agent still		
	has not arrived yet		

The plastic welding finally came in this week and the box was able to be fabricated. The box still needs to be tested for possible leaks and will be a task for this upcoming week. The box should also be tested with PBS and Nitrogen soon to make sure the volume is enough to deoxygenate the liquid to the correct amount.

Order various materials	This week, a lot of time was spent waiting to	JT	1.5 hr
needed for project	see if there was indeed a funding string that		
	we would be able to use to order from external		
	vendors. Now that that is cleared up, I will		
	place various orders for things needed for our		
	project such as clamps for the enclosure team.		

Materials were ordered for various parts of the project such as duct clamps, and press to close bags.

Author: Delaney Reindl

Order PE film bags	Determine necessary dimensions for the	DR	0.5 hr
	press-to-close bags and place an order through		
	Josh.		

I finalized and submitted an order for a pack of press-to-close polyethylene bags (w = 8", h = 10", thickness = 2 mil). This will be used as the enclosure material covering the bulk of the frame.

Attend Individual	Give presentation of individual contributions	DR	0.75 hr
Presentation	(Feb 21) thus far and peer review three other		
	groups.		

I gave and attended the individual presentation on Wed 02/21. I shared my individual contributions to this project thus far, where I primarily focused on the material enclosure aspect of the design.

Create second half of	second half of To complete the closed loop for fluid flow, the		1.5
medical tube and pump	tubing from the enclosure to the reservoir		
setup (from the outlet of needs to be made. The system will look very			
the enclosure to the inlet	similar and will require another pump system		
of the reservoir)	which Shrey is able to find and provide.		

The second pump was acquired and the second half of the pump system was also completed. This refers to the pump part that goes from the outlet of the enclosure back into the reservoir.

Gantt Chart

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Feb				M	ar		Apr				May			
Task	2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations				0											
Testing															
Redesign and Fabrication	X	X	Х	X											
Presentations				X											

Working Prototype Demonstration					0			
Redesign								
Fabrication								
Presentation and Demonstration								
Final Presentation								
Testing								
Report								
Presentation								

X = Completed Tasks, O = Milestone Deadlines