Knee Arthroscopy Manikin

Client:	Corinne Henak	
Consultants:	Corinne Henak, Russ Johnson	
Team:	Shrey Ramesh (leader)	Delaney Reindl (leader)
	Jack Thurk (accountant)	Connor Dokken (communicator)
	Sierra Reschke (admin)	Rachel Dallet (admin)

Status

<u>Report Date:</u> 04/17/2024 <u>Next Milestone:</u> Final Review <u>Deadline:</u> 04/18/2024 <u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Important aspects of this past week include meeting with Dr. Henak and Dr. Johnson to discuss updates on the enclosure assembly and to receive feedback on the progress of each project division, as well as to complete outreach deliverables and begin working on final deliverables such as the final report and poster. For the bone team, the cartilage-bone mechanism was tested and the stress analysis was continued. For the enclosure team, new enclosure materials – dryer vent tubing for flexion mechanism – were ordered and obtained and will be implemented into the prototype assembly and testing of the bent configuration. For the pump team, patch leaks and maintaining the enclosure position were brainstormed, as imaging the knee joint in any other position but upright is limited by the rigidity of the enclosure, further prompting media leakage outside of the enclosure. As the semester is coming to an end, final prototype assembly and testing will be completed in order to ensure there is adequate data to present during final deliverables.

New Tasks Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		

Work on assigned section	Our group set a goal to have a poster draft by	RD	3 hr
of the poster	Friday. I need to complete the Bone Team		
	section of that.		
Begin working on final	Discuss with the team which section everyone	RD	1.5 hr
report	will cover in the final report. Start writing my		
	section.		
Read over outreach	Outreach deliverables are due this Friday. I	RD	1 hr
deliverables and submit	want to check over everyones sections before		
	submitting.		
Assist with prototype	Work with the other teams on thinking	SGR	2 hrs
assembly	through the assembly of the full prototype, if		
	this is the decided path.		
Finalize stress analysis	Determine which outputs are best to analyze	SGR	2 hrs
results	for the enclosure stress analysis in FEBio.		
	Analyze these results and convey them in a		
	clear and legible way.		
Complete poster draft by	Complete a first draft of my assigned sections	SGR	2 hrs
Friday.	of our report by Friday. Review received		
	feedback and make improvements on the draft		
	prior to poster presentations next week.		
Begin working on ME	Begin working on my assigned sections of the	SGR	1 hrs
final report.	ME final report. Ask for feedback from my		
	peers and review their work as well.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Assist/test with prototype	Assist with enclosure prototype assembly and	DR	3 hrs
assembly – Implement	test with reservoir/pump team using rigid		
dryer vent to flexion point	enclosure design. Using the dryer vent, test to		
of prototype.	see if the prototype leaks and lets any light in		
	when the prototype is in bent configuration.		
Brainstorm/begin working	Begin working on final report/poster sections.I	DR	3 hrs
on final deliverables.	will be handling the conclusion/future		
	direction sections of both the report and		
	poster.		

Finish assigned poster	I have been tasked with completing the	SKR	3 hrs
section	enclosure section of the poster. After receiving		
	feedback from Dr. Henak and Russ this		
	Friday, I will finalize and print the poster early		
	next week.		
Finish enclosure design	Once the dryer vent arrives, we will attach it	SKR	3 hrs
with dryer vent and	to the enclosure and determine the best		
epoxying femur to lid	method of aligning premade holes with the		
	fluid flow ports and scope ports.		

Ритр Теат

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Complete and practice	I will complete the testing section of the	CD	3 hr
poster section	poster before Friday to get feedback during		
	out advisor meeting, then make all necessary		
	changes before the presentation next Friday.		
Test new enclosure	O-rings and new screws/nuts were acquired at	CD	3 hr
components	the makerspace. The dryer vent material has		
	been ordered as well. The enclosure needs to		
	be tested with the new screws/nuts to see if it		
	will be able to hold set angles, the o-rings to		
	potentially seal leakage at the ports, and the		
	dryer vent material around the midsection of		
	the joint. These three changes will potentially		
	address the three major issues the design is		
	facing.		
Test new O-rings with	Test new O-rings purchased to see if the	JT	2 hr
new leaks	leakage from the ports is less than before. If		
	they work like they should, the leakage should		
	be less and hopefully create more of a seal		
	around the ports.		
Create a more final pump	After feedback from this upcoming Friday	JT	2 hr
team part of the poster	meeting, aspects of the poster will need to be		
	altered to create the best possible poster for		
	presentation for next Friday.		

Test the new joint locking	Now with the right materials purchased, the	JT	2 hr
system	bolts and nuts, the joints will need to be tested		
	to see if this locking system will be able to		
	hold the weight of the femur enclosure at		
	various different angles. It will also need to be		
	tested to see if the nut and bolt could damage		
	the PLA if tightened too much. Perhaps, after		
	testing, washers might need to be purchased to		
	help protect the enclosure from permanent		
	deformation.		

Old Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as well.		
Update team with testing	Go through our comments and notes from	RD	3 hr
results and discuss next	Wednesday's testing with the team and		
steps for bone team	advisors. Meet with Sierra to discuss how we		
	want to display our testing.		
Start brainstorming final	Work with the other teams to discuss how and	RD	2.5 hr
deliverables/assembly	when we will assemble the final prototype and		
	how we want to test as a team		
Assist with prototype	Work with the other teams on thinking	SGR	3 hrs
assembly	through the assembly of the full prototype.		
	Provide updates on the results of the most		
	recent sample attachment mechanism testing.		
Continue stress analysis	Continue working on the stress analysis both	SGR	3 hrs
	in FEBio as well as in SOLIDWORKS.		
	Specifically, experiment with different		
	materials, time steps, displacements applied,		
	and force definitions.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Assist/test with prototype	Assist with enclosure prototype assembly and	DR	3 hrs
assembly	test with reservoir/pump team using rigid		
	enclosure design.		
Brainstorm/begin working	Begin working on final report/poster sections.	DR	1.5 hrs
on final deliverables			
Work on/complete	Work on/complete assigned portion of	DR	1.5 hrs
outreach deliverables	outreach deliverables.		
Test enclosure in bent	After successful testing with Connor and Jack	SKR	4.5 hr
configuration	of the enclosure in the upright orientation, we		
	will work together again to test the enclosure		
	in the bent configuration. We expect this to be		
	more challenging due to the rigidity of the		
	silicone.		
Begin work on final	With two poster presentations, an oral	SKR	1.5
deliverables	presentation, and an oral presentation		
	approaching quickly, I will begin work on		
	slides and compiling relevant		
	images/documentation for these deliverables		

Ритр Теат

Task Name	Description and Concrete Outcome	Owner	Est.
			Time

Patch leaks and better	From running another test where the enclosure	IT	4
mechanism for keeping	was kept in the upright position there was	• •	
the enclosure in place	much less leakage than our initial test		
	However, it is easy to keep the enclosure in		
	the upright position due to the rigidity of the		
	silicone casing. But to image the knee joint in		
	other positions presents a challenge as the		
	silicone does not like to bend. So the pump		
	team will help to brainstorm ideas for how the		
	enclosure can be locked in place for imaging		
	while also keeping leakages and light		
	exposure to a minimum.		
Begin brainstorming	Although it is early, the end of the semester is	JT	1.5
deliverables	coming fast. To prevent a cram at the end of		
	the semester, it will be beneficial to get a		
	headstart on looking at some of the criteria for		
	the deliverables and begin putting something		
	together.		
Help others who need	The pump team has been making good	JT	~0.5
help to finish a task before	progress and, besides continuing to find better		
the end of the semester.	ways to minimize leaks, is close to having a		
	pretty complete pump prototype. If others in		
	the group need help as the semester begins to		
	wrap up to finish their tasks, I will offer help		
	to the Manikin Skywalker team so that there is		
	a higher chance of having a fully complete		
	working prototype by the time of the		
	deliverables.		
Test leakage with the joint	Finalizing the design is still the highest	CD	4.5 hr
at different angles.	priority this week. Tests with the knee in the		
	upright position went well, but tests at		
	different angles need to be conducted. Team		
	will need to brainstorm a way to hold the		
	current design at an angle as the current bolts		
	cannot do this on their own.		
Begin reviewing final	Reviewing rubrics and expectations for final	CD	1.5 hr
deliverables	deliverables, begin brainstorming/outlining		

what sections of the deliverables I am	
responsible for.	

Technical Section

Author: Rachel Dallet

Update team with testing	Go through our comments and notes from	RD	3 hr
results and discuss next	Wednesday's testing with the team and		
steps for bone team	advisors. Meet with Sierra to discuss how we		
	want to display our testing.		

Sierra and I updated the team and faculty on our success from testing. Statistical analysis is not needed for the bone team's testing, as confirmed in our Friday meeting. It can be proven without doubt that the mechanism of attachment is well under 5 minutes. Sierra and I are still working out some stress analysis roadblocks to hopefully be able to display that on the poster.

Author: Sierra Reschke

Continue stress analysis	Continue working on the stress analysis both	SGR	3 hrs
	in FEBio as well as in SOLIDWORKS.		
	Specifically, experiment with different		
	materials, time steps, displacements applied,		
	and force definitions.		

I spent time modifying the boundary conditions, materials, loads, and analysis steps applied to the model of our enclosure in FEBio. None of the runs were able to successfully terminate (all ended in error termination). However, Dr. Henak was very helpful and sent over a useful doc of ideas she tried as well as a .feb file that runs to 20% completion. Effective stress and displacement magnitude distributions and values were able to be extracted; however, these values are only from the very start of the load being applied. I will continue to work with Dr. Henak and FEBio to see if more useful results can be obtained.

Patch leaks and better	From running another test where the enclosure	JT	4
mechanism for keeping	was kept in the upright position, there was		
the enclosure in place	much less leakage than our initial test.		
	However, it is easy to keep the enclosure in		
	the upright position due to the rigidity of the		
	silicone casing. But to image the knee joint in		
	other positions presents a challenge as the		
	silicone does not like to bend. So the pump		
	team will help to brainstorm ideas for how the		
	enclosure can be locked in place for imaging		
	while also keeping leakages and light		
	exposure to a minimum.		

After some brainstorming, the best method that the pump team came up with to keep the joint at certain angles is to have a bolt that pokes through the joint so a nut can be fastened onto the end and tightened at the angle of choice. The materials were picked up at the makerspace and have yet to be tested. However, the mechanism will need to be tested soon to make sure it can hold the weight at a given angle, without being too tight to possibly damage the PLA.

Begin brainstorming	Although it is early, the end of the semester is	JT	1.5			
deliverables	coming fast. To prevent a cram at the end of					
	the semester, it will be beneficial to get a					
	the deliverables and begin putting something					
	together.					

I have started making the pump teams part of the BME poster that will be presented next Friday. The poster was created early to try and get feedback before the presentation itself.

Author: Delaney Reindl

Work on/complete	Work on/complete assigned portion of	DR	1.5 hrs
outreach deliverables	outreach deliverables.		

For the outreach deliverables, I completed the procedure and discussion to explain the activity and how to complete it. I also added tips and troubleshooting on how to improve the activity and its outcome, as well as completed the going further section where I went into detail on extra knowledge concerning the biomechanics of jumping. I compared jumping on a hard flat surface to that on a trampoline, the biomechanics behind the amount of pain experienced/not experienced when jumping, as well as the limitations produced by excessive bending the knee when jumping.

Test enclosure in bent	After successful testing with Connor and Jack	SKR	4.5 hr
configuration	of the enclosure in the upright orientation, we		
	will work together again to test the enclosure		
	in the bent configuration. We expect this to be		
	more challenging due to the rigidity of the		
	silicone.		

After buying new nuts, bolts, and o-rings from the makerspace, we are able to bend the enclosure to any angle and have it stay in place. The enclosure is now leak-proof unless the 'scope' is removed from the port. We are now waiting for the duct to protect the enclosure from light. Once this arrives and we attach it to the enclosure, barring any further complications, we will have a fully functioning design ready for for further testing.

Test leakage with the joint	Finalizing the design is still the highest	CD	4.5 hr
at different angles.	priority this week. Tests with the knee in the		
	upright position went well, but tests at		
	different angles need to be conducted. Team		
	will need to brainstorm a way to hold the		
	current design at an angle as the current bolts		
	cannot do this on their own.		

Testing at a bent angle with the entire enclosure wrapped in silicon was completed and discussed during last Friday's advisor meeting. The enclosure was very difficult to bend to a desired angle, so a new design using a new screw/nut locking system and a dryer vent material around the midsection was proposed and will be tested this week.

Gantt Chart

Weel	x 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Feb			Mar				Apr				May		
Task	2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations				0											

Testing	X												
Redesign and Fabrication	X	x	X	X									
Presentations				X									
Working Prototype Demonstration								0					
Redesign					Х	Х	Х	Х					
Fabrication					Х	Х	Х	X					
Presentation and Demonstration								X					
Final Presentation												0	
Testing									Х	Х	Х		
Report											Х		
Presentation											Х		

X = Completed Tasks, O = Milestone Deadlines