Knee Arthroscopy Manikin

Client: Corinne Henak

Consultants: Corinne Henak, Russ Johnson

Team: Shrey Ramesh (leader) Delaney Reindl (leader)

Jack Thurk (accountant) Connor Dokken (communicator)

Sierra Reschke (admin) Rachel Dallet (admin)

Status

Report Date: 02/22/2024

<u>Next Milestone:</u> Working Prototype

Deadline: 02/23/2024

<u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Important aspects of this past week include meeting with Dr. Henak and Dr. Johnson to discuss weekly updates as well as to receive feedback on the progress of each project division. Within this past week, the bone team researched new wires and magnets to order for the attachment mechanism, as the previous wire was too stiff and the previous magnet was not strong enough. The enclosure team put in an order for the stainless steel duct clamps, and determined which polyethylene bags to order for the enclosure material. The bone and enclosure CAD were also updated and a flow rate sensor was ordered. The pump team reevaluated the bubbler attachments and brainstormed how the dissolved oxygen sensor will be used with the reservoir during testing. The reservoir box began fabrication and medical tubing suction cup holders were ordered to help reduce the potential for media leakage during testing. Each team member also gave their individual presentations as well.

New Tasks Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		

Give individual	Present to peers and TAs on Wednesday at	RD	.5 hr
presentation	4pm. Go through my contributions to the		
	project.		
Perform stress analysis on	Load the CAD into FEBio and perform a	RD	3 hr
the enclosure system	stress analysis on it given modulus of		
	elasticity and young's modulus.		
Order new wire	Talk to Jack and Dr. Henak about our budget.	RD	2 hr
	Then either order or obtain new wire from the		
	makerspace. Determine if it's bendable.		
Implement attachment	Continue working to update the wire, bone	SGR	2 hr
mechanism changes	models, and sample attachment mechanism		
	based on the main takeaways from testing.		
Stress analysis of	Utilize FEBio to perform a stress analysis on	SGR	2.5 hr
enclosure	the enclosure FE model and analyze the		
	results.		
Experiment with and	Experiment with different wires of different	SGR	1 hr
order new wire	thicknesses to replace the current wire in our		
	attachment mechanism as it is too stiff.		
Attend individual	Present my individual presentation on	SGR	0.5 hr
presentation.	Wednesday, February 21st and review the		
	presentations of my peers.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Order PE film bags	Determine necessary dimensions for the	DR	0.5 hr
	press-to-close bags and place an order through		
	Josh.		
Attend Individual	Give presentation of individual contributions	DR	0.75 hr
Presentation	(Feb 21) thus far and peer review three other		
	groups.		
Research other	Determine if the biocompatible caulk is for	DR	1.25 hr
biocompatible caulk	sure the material we want to go forward with		
options	and find other options and submit the order		
	form through Josh.		
Develop enclosure	Draw out a material enclosure plan to	DR	2.5 hr
attachment plan	highlight where each material will go.		

Order flow rate sensor for	Request a free sample of the fluid flow rate	SKR	.5 hr
Pump team	sensor from Renesas		
Reprint Enclosure	Redesign and reprint enclosure based on third	SKR	3 hr
	iteration of testing		
Print Updated Bones	Go the the Makerspace and print the updated	SKR	1 hr
	tibia and femur models		
Assemble Full Enclosure	Using previous enclosure prints and silicone,	SKR	2 hr
	assemble a full enclosure to test resistance to		
	leaks		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Fabricate the reservoir	The plastic was cut but the bonding agent is	JT	3 hr
box	still being delivered. Once delivered, the		
	bonding agent will be applied to create the		
	box and test it for potential leaks and		
	durability. UPDATE: The bonding agent still		
	has not arrived yet		
Order various materials	This week, a lot of time was spent waiting to	JT	1.5 hr
needed for project	see if there was indeed a funding string that		
	we would be able to use to order from external		
	vendors. Now that that is cleared up, I will		
	place various orders for things needed for our		
	project such as clamps for the enclosure team.		
Create second half of	To complete the closed loop for fluid flow, the	JT	1.5
medical tube and pump	tubing from the enclosure to the reservoir		
setup (from the outlet of	needs to be made. The system will look very		
the enclosure to the inlet	similar and will require another pump system		
of the reservoir)	which Shrey is able to find and provide.		
Finish fabricating	Still waiting for bonding agent to be shipped,	CD	3 hr
reservoir	progress was checked with our TA today.		
	Once arrived the reservoir will be assembled.		
	Need to fabricate piece to hold dissolved		
	oxygen sensor as well.		

Re-evaluate/design	Decide on a final bubbler attachment and	CD	2 hr
bubbler attachments	create final prototype, or order selected		
	bubbler stone		
Research flow rate	Research whether or not the acquired flow rate	CD	1 hr
sensors	sensor is compatible with liquids, or if the		
	company offers a similar product that is		
	designed for use with liquids.		

Old Tasks *Bone Team*

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as well.		
Find new wire to order	Go to the makerspace and experiment with	RD	2 hr
	different wires to find a more bendable wire to		
	order		
Decide on new magnets to	After talking with the group, the original	RD	2 hr
order	magnets I found aren't ideal. We might need		
	to look into strength testing of the magnets		
	and order different ones.		
Begin working on my	Start making slides for next week's individual	RD	1.5 hr
individual presentation	presentation. Ask Josh logistical questions at		
	our upcoming meeting.		
Implement attachment	Update the wire, bone models, and sample	SGR	2 hr
mechanism changes	attachment mechanism based on the main		
	takeaways from testing last week.		
Complete individual	Begin and finish making slides for my	SGR	2 hr
presentation.	individual presentation next Monday. Practice		
	my presentation and ensure it is under 5		
	minutes.		

Assist with finalizing the	Assist Rachel with researching better magnets	SGR	2 hr
ordering of magnets	and with the ordering if we find suitable ones.		
	Begin to implement them into the bone model		
	design if/when they arrive.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Order biocompatible	Place order for PE film. Research went into	DR	2.5 hr
caulk, PE film	new biocompatible caulk to purchase as the		
	previous option is not purchasable for		
	personal use.		
Determine enclosure	Develop an exact enclosure material	DR	2.5 hr
material attachment plan	attachment plan. This will involve		
	determining which region of the enclosure		
	frame will need which specific material. It		
	may be helpful to devise back up plans as		
	well.		
Find and order hose	Need to research various types of	DR	1 hr
clamps	"hose" clamps that will function to help keep		
	the PE film attached onto the frame.		
Update Bone CAD	Update the bone CAD based on feedback from	SKR	4 hr
	Rachel and Sierra's testing. Some of the		
	changes to be made include adding more		
	points of attachment and adding a "lip" below		
	the mounting edges of the model.		
Order flow rate sensor for	Request a free sample of the fluid flow rate	SKR	.5 hr
Pump team	sensor from Renesas		
Prepare and deliver	Prepare slides summarizing individual	SKR	1.5 hr
individual presentation	contributions to the project and deliver it to		
	other ME 352 students and TAs		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time

Re-evaluate/design	Decide on a final bubbler attachment and	CD	2 hr
bubbler attachments	create final prototype, or order selected		
	bubbler stone		
Research flow rate	Research whether or not the acquired flow rate	CD	1 hr
sensors	sensor is compatible with liquids, or if the		
	company offers a similar product that is		
	designed for use with liquids.		
Begin work on individual	Start reviewing requirements and making	CD	2 hr
presentations	slides for individual presentations next week		
Dissolved oxygen sensor	Brainstorm how the dissolved oxygen sensor	CD	1 hr
placement	will be used with the design of the reservoir		
	during testing		
Work on individual	For the individual presentations on Monday at	JT	2 hr
presentations	4:30 the slides will need to be created and		
	practiced this weekend in preparation.		
Order medical tubing	To reduce permanent features and therefore	JT	1 hr
suction cup holders	possible leaks in the reservoir, suction cup		
	holders that would clip on to the tubing and		
	suction to the inside of the reservoir will be		
	used. This would minimize potential leaks or		
	errors when drilling holes into the side of the		
	reservoir		
Fabricate the reservoir	The plastic was cut but the bonding agent is	JT	3 hr
box	still being delivered. Once delivered, the		
	bonding agent will be applied to create the box		
	and test it for potential leaks and durability.		

Technical Section

Decide on new magnets to	After talking with the group, the original	RD	2 hr
order	magnets I found aren't ideal. We might need		
	to look into strength testing of the magnets		
	and order different ones.		

Author: Rachel Dallet

Instead of ordering magnets from a huge pack online, we found cheap ones from the makerspace. I believe they are about 11 cents a piece and are pretty strong. We will need to find a quantitative way of measuring their strength but they seem like they will do the job.

Begin working on my	Start making slides for next week's individual	RD	1.5 hr
individual presentation	presentation. Ask Josh logistical questions at		
	our upcoming meeting.		

Author: Rachel Dallet

Here is a link to my individual presentation slides:

https://docs.google.com/presentation/d/1JT_McG6uLQhN-RokoMBdX1rxkUCnotbSljMh2Bu29 io/edit#slide=id.g24b1429f884_0_0

I finalized my slides and practiced running through them. I then gave my presentation and peer evaluated other individuals.

Author: Sierra Reschke

Complete individual	Begin and finish making slides for my	SGR	2 hr
presentation.	individual presentation next Monday. Practice		
	my presentation and ensure it is under 5		
	minutes.		

I completed the slides for my individual presentation. I have been practicing to ensure it is under the 5 minute time limit and will be giving this presentation on Wednesday, February 21st. I will also attend, listen to, and review the presentations of my peers from other groups.

Assist with finalizing the	Assist Rachel with researching better magnets	SGR	2 hr
ordering of magnets	and with the ordering if we find suitable ones.		
	Begin to implement them into the bone model		
	design if/when they arrive.		

The magnets were ordered and have arrived. The bone team and enclosure team are working to integrate these magnets into the prototype along with the other changes that resulted from the initial attachment mechanism testing.

Work on individual	For the individual presentations on Monday at	JT	2 hr
presentations	4:30 the slides will need to be created and		
	practiced this weekend in preparation.		

I completed and practiced my slides before presenting them to fellow peers and TA's. The presentation went smoothly and I was able to finish my presentation at right around the 5 minute mark.

Begin work on individual	Start reviewing requirements and making		2 hr
presentations	slides for individual presentations next week		

I completed my individual presentation and the associated peer reviews. The presentation went well and all criteria were met for the presentation. Still awaiting feedback.

Dissolved oxygen sensor	Brainstorm how the dissolved oxygen sensor	CD	1 hr
placement	will be used with the design of the reservoir		
	during testing		

We decided we will use an extra \sim 3" x 6" piece of acrylic with a 1.5" hole cutout in the center to hold the probe for the dissolved oxygen sensor. This piece will sit on top of the resivoir which will sit on the top of the reservoir and hold the dissolved oxygen sensor in the media throughout the duration of the test.

Update Bone CAD	Update the bone CAD based on feedback from	SKR	4 hr
	Rachel and Sierra's testing. Some of the		
	changes to be made include adding more		
	points of attachment and adding a "lip" below		
	the mounting edges of the model.		

The bone CAD was updated to remove the current crossbar and add a greater number of bars below the upper surface of the bone to create a "lip" for smaller tissue samples to remain secure

for the duration of testing. Additional attachment points were also included on the model as shown in the CAD model of the tibia below.

Prepare and deliver	Prepare slides summarizing individual	SKR	1.5 hr
individual presentation	contributions to the project and deliver it to		
	other ME 352 students and TAs		

I delivered my individual presentation and delivered feedback to three other peers and two TA's

Author: Delaney Reindl

Find and order hose	Need to research various types of	DR	1 hr
clamps	"hose" clamps that will function to help keep		
	the PE film attached onto the frame.		

A four-piece set of 6" 304 stainless steel duct clamps were ordered which will function to secure the material enclosure on the outer diameter of the enclosure frame. We ordered 6" because the other diameter is \sim 5.6" and a clamp will be applied on each end. A four-piece set of 5" clamps were also purchased to secure the material on the "inner diameter" of the frame, which is \sim 4.85"; two clamps will be applied on each end.

Gantt Chart

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		F	eb			Mar				Apr			May		
Task	2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations				0											
Testing	X														
Redesign and Fabrication	X	X	X	Х											
Presentations				Х											
Working Prototype Demonstration									0						
Redesign															
Fabrication															
Presentation and Demonstration															
Final Presentation															
Testing															
Report															
Presentation															

X = Completed Tasks, **O** = Milestone Deadlines