Knee Arthroscopy Manikin

Client: Corinne Henak

Consultants: Corinne Henak, Russ Johnson

Team: Shrey Ramesh (leader) Delaney Reindl (leader)

Jack Thurk (accountant) Connor Dokken (communicator)

Sierra Reschke (admin) Rachel Dallet (admin)

Status

Report Date: 03/14/2024

Next Milestone: Working Prototype

Deadline: 03/15/2024

<u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Important aspects of this past week include meeting with Dr. Johnson to discuss updates on the enclosure assembly and to receive feedback on the progress of each project division, attending BME Outreach, and preparing for Show and Tell 03/20.. For the bone team, both the stress analysis of the bones and the implementation of the wire attachment mechanism are still in progress. For the enclosure team, the first enclosure assembly was completed and the team was able to determine that in order for testing to progress and to have a functioning prototype, larger bags must be used and the femoral side of the enclosure frame needs to be altered. The femoral side of the frame contains a lip at the top that is too wide and tall to permit the bag from covering it. By removing this lip, the bag should fit easier and there should be more slack in the bag allotted for the flexion movement of the model. For the pump team, the reservoir was sealed and the new bubbler attachment was constructed. The reservoir and bubbler will be fasted together in order to test with the nitrogen and dissolved oxygen sensor. Going forward, each team will continue to work towards developing a working prototype that can be tested.

New Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time

Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		
Continue working through	Talk to Dr. Henak at this week's meeting about	RD	2 hr
stress analysis	what our next steps should be for the stress		
	analysis.		
Prepare for and give	Meet with the group to assemble or prototype	RD	2 hr
presentation	for our presentation on the 20th. Sierra and I		
	need to find something to act in place of the		
	live tissues. Practice going through our		
	demonstration.		
Finish outreach	For outreach, we need a report, activity guide,	RD	1.5 hr
deliverables	and presentation to submit to Dr. Puccinelli.		
	Work with the BME side of the team on those		
	items		
Conduct wire testing	Wire testing was performed without the bone	SGR	2 hrs
	models last week. Now, perform wire		
	attachment testing on the bone models. Record		
	and analyze results		
Continue stress analysis	Ask Dr. Henak about our current struggles	SGR	1 hr
	with stress analysis. Continue to implement		
	next steps and possible solutions.		
Find a valve for the probe	Conduct research to find a one-way valve that	SGR	1 hr
port	will allow the probe to be inserted into the		
	assembly and not allow water to leak.		
Prepare and practice	Work with the team to create our	SGR	2 hrs
presentation	demonstration presentation. Finish assembling		
	the initial prototype and prepare a		
	demonstration for peers.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Meet with FC	Meet with Dr. Henak 03/13 to discuss	DR	0.5 hr
	enclosure assembly and design specifications		
	relating to it.		

Work on Outreach	Attended Georgia O'Keefe Middle School and	DR	2 hr
Deliverables	gave a presentation/complete biomechanics		
	jumping activity with kids. Now must work to		
	complete the associated deliverables.		
Update enclosure	Determine what <i>new</i> enclosure bags we want	DR	0.5 hr
assembly	to use for the testing aspect of this project.		
Prepare for Show and Tell	This presentation will take place on 03/20 and	DR	3 hr
Presentation	it will function to demonstrate our working		
	prototype to our peers.		
Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hr
the reservoir	how the enclosure handles fluid flow.		
Redesign Femur and Tibia	Redesign and reprint the femur and tibia	SKR	4 hr
Enclosure	enclosures to prevent light from entering at		
	any point and include dedicated ports for		
	scope insertion.		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Create flow loop using	Help with changes to the enclosure based on	CD	4 hr
entire model	feedback from last week's meetings. Once		
	necessary improvements are made, create the		
	first flow loop using the entire system,		
	including pumps, reservoir, and actual		
	enclosure model.		
Prepare for presentation	Determine how we plan to represent our	CD	2 hr
	model, what level of functionality we plan to		
	show (just the components, all the components		
	together, components together with water		
	flowing, etc.). Practice the demo with the		
	whole team. Presentation is wednesday at		
	4pm.		
After testing adjustments	The reservoir will be tested on friday before	JT	4 hr
	the meeting with Jingyi. Once tested, there		
	will be things that need to be adjusted and		
	fixed to based on the testing results. Hopefully		

	only minor fixes will be needed. If larger things need to be fixed, next week tasks will incorporate those tasks. Otherwise this next week will be dedicated to smaller fixes that		
Prepare for presentation	will increase the reliability of the reservoir. With the upcoming presentation this next	JT	2hr
r repare for presentation	week. I will help to prepare the pump system for showing our progress throughout the capstone project. I will also attend a peer review to ask questions and give advice for another group.	J1	2111

Old Tasks *Bone Team*

Task Name	Description and Concrete Outcome	Owner	Est. Time
Update BME and ME websites	Add the progress reports to both the ME and BME websites. Update the project status as well.	RD	0.5 hr
Continue working on the stress analysis	After emailing with Dr. Henak, we tried to use Gmesh instead of FEBio. Our computers still don't seem to be working with either software. I might need to go into an engineering lab and do it on one of those computers. I will also try her new suggestions: GIBBON and Tetgen.	RD	2.5 hr
Plan and attend our BME outreach activity	The BME side of the team signed up to run an activity at a local elementary school science fair. Meet with the team to figure out the details on that and go to the school on Tuesday, March 12.	RD	3 hr
Continue working on stress analysis	The .step file I downloaded from the SOLIDWORKS model does not open in either FEBio or gmesh due to the fillets. Dr. Henak suggested trying GIBBON or tetgen, which	SGR	2 hrs

	Rachel and I will both try to implement this week. We will continue to work with Dr. Henak as needed.		
Plan and prepare for outreach	Now that the team has our outreach date planned and have decided on an activity, we will work to write up a detailed outline and plan. We will also need to continue communicating with the event coordinator to ensure the supplies we need are either available or can be borrowed.	SGR	2 hrs
Attachment mechanism wire and prototype assembly	Work to implement the wire for the attachment mechanism and test its functionality. Work with the other teams to hopefully have a full initial prototype assembled for next Friday.	SGR	2 hrs

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Assist in enclosure	Shrey and I will assemble the enclosure with	DR	2 hrs
assembly	the materials and frame. This will also involve		
	ensuring the bones fit properly into the model.		
Help prepare/plan for	We are deciding on what activity to go	DR	1.5 hrs
outreach	forward with for outreach.		
Attend BME Outreach	We will be attending our BME Outreach on	DR	2.5 hrs
	3/12. At this we will be presenting a		
	biomedical engineering activity to children.		
Test Enclosure	Put the enclosure through standard use	SKR	1 hr
	scenarios including bending and applied		
	pressure		
Attend Outreach	Attend and participate in outreach at the	SKR	2.5 hrs
	middle school		
Connect the enclosure to	Coordinate with the pump team to determine	SKR	3 hrs
the reservoir	how the enclosure handles fluid flow.		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Finish reservoir and	Finish sealing reservoir and constructing new	CD	1.5 hr
bubbler	bubbler		
Test reservoir and bubbler	Communicate with Dr. Henak and test the	CD	2 hr
	reservoir / bubbler to see how long it takes to		
	de-oxygenate water with nitrogen gas using		
	our current bubbler		
Help setup testing for	Help set up and test the entire enclosure	CD	2.5 hr
whole system	assembly and inserting the ports for the		
	pumps. Set up pumps for testing with		
	enclosure if testing is going well.		
Fasten the bubbler to the	To disperse the nitrogen effectively, the	JT	3 hr
bottom of reservoir	bubbler might have to be fastened to the		
	bottom of the reservoir to bubble the PBS		
	from the ground up. To do this, a design, a		
	possible ordering of materials, and a		
	fabrication will be needed to secure the		
	bubbler to the bottom of the reservoir. This		
	task will be most effective once some testing		
	is done with the more permanent bubbler,		
	finished reservoir and Nitrogen testing.		
Test the reservoir with	Now that the reservoir has been fabricated, the	JT	3 hr
nitrogen and the dissolved	bubbler will be fastened in a more permanent		
oxygen sensor.	way to the bottom of the reservoir. Once		
	fastened, the bubbler and reservoir should be		
	tested with the Nitrogen source and Oxygen		
	sensor to make sure that all runs well.		

Technical Section

Author: Rachel Dallet

Plan and attend our BME	The BME side of the team signed up to run an	RD	3 hr
outreach activity	activity at a local elementary school science		
	fair. Meet with the team to figure out the		
	details on that and go to the school on		
	Tuesday, March 12.		

The BME side of the group went to an elementary school on Tuesday evening to run through a biomechanics of jumping activity for the kids. Here is a link to our activity: https://docs.google.com/presentation/d/1_VlxM7N4wZm5IlKgcW2UJVgz_3ZxlDd3nClaMqBGQ20/edit#slide=id.p

Plan and prepare for	Now that the team has our outreach date	SGR	2 hrs
outreach	planned and have decided on an activity, we		
	will work to write up a detailed outline and		
	plan. We will also need to continue		
	communicating with the event coordinator to		
	ensure the supplies we need are either		
	available or can be borrowed.		

I prepared the last few slides of the presentation attached above, specifically the ones explaining why a higher jump is possible when you bend your knees more and which muscles/joints are used in bent leg jumps vs straight leg jumps. The team went to an elementary school on Tuesday night and interacted with kids for 90 minutes. We focused on having them jump normally, asking how they think they could jump higher, then explaining a brief overview of the biomechanics behind jumping. It was very rewarding to see how engaged they were and how much fun they had seeing how high they could jump.

Author: Delaney Reindl

Assist in enclosure	Shrey and I will assemble the enclosure with	DR	2 hrs
assembly	the materials and frame. This will also involve		
	ensuring the bones fit properly into the model.		

On Friday 03/08 Shrey and I assembled the enclosure with a strip of silicone, press-to-close bag, and duct clamp. From this initial attempt we were able to determine that the press-to-close bag is too short to cover both lips of the frame, which will cause leakages. From this we were able to

determine that we need to get larger bags and potentially consider reprinting the femoral side of the frame to remove the lip.

Help prepare/plan for	We are deciding on what activity to go	DR	1.5 hrs
outreach	forward with for outreach.		

Helped work on the BME Outreach presentation that was presented to elementary/middle schoolers. This activity largely focused on displaying and explaining the biomechanics behind jumping.

Attend BME Outreach	We will be attending our BME Outreach on		2.5 hrs
	3/12. At this we will be presenting a		
	biomedical engineering activity to children.		

Attended Georgia O'Keeffe Middle School where we had elementary/middle schoolers participate in a jumping activity. We explained the biomechanics behind jump height when legs are at maximum knee flexion vs completely straight.

Finish reservoir and	Finish sealing reservoir and constructing new	CD	1.5 hr
bubbler	bubbler		

Reservoir was fully sealed and new bubbler was made this week.

Test reservoir and bubbler	Communicate with Dr. Henak and test the	CD	2 hr
	reservoir / bubbler to see how long it takes to		
	de-oxygenate water with nitrogen gas using		
	our current bubbler		

Marked as green as the reservoir and bubbler will be tested in Dr. Henaks lab tomorrow morning prior to our afternoon meeting.

Test Enclosure	Put the enclosure through standard use	SKR	1 hr
	scenarios including bending and applied		
	pressure		

The enclosure was assembled with Delaney and underwent preliminary evaluation. We

determined that a new pattern of silicone was required as well as minor changes to the femur enclosure to prevent light from entering. Changes to the scope insertion systemwere also discussed and will be implemented in the next iteration of the design.

Attend Outreach	Attend and participate in outreach at the	SKR	2.5 hrs
	middle school		

I attended outreach with the other BME group members and participated in teaching a jumping biomechanics activity to elementary schoolers.

Test the reservoir with	Now that the reservoir has been fabricated, the	JT	3 hr
nitrogen and the dissolved	bubbler will be fastened in a more permanent		
oxygen sensor.	way to the bottom of the reservoir. Once		
	fastened, the bubbler and reservoir should be		
	tested with the Nitrogen source and Oxygen		
	sensor to make sure that all runs well.		

I got into contact with Jingyi, from Dr. Henak's lab and have set up a time to meet to test the reservoir before the meeting on friday. Once completed, like most testing, there will be problems that arise that will need to be addressed to get to a more final and reliable product.

Gantt Chart

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Feb			Mar			Apr				May				
Task		2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations					0											
Т	esting	X														

Redesign and Fabrication	X	Х	Х	Х							
Presentations				X							
Working Prototype Demonstration								0			
Redesign					X	Х	Х				
Fabrication					X	Х	Х				
Presentation and Demonstration											
Final Presentation											
Testing											
Report											
Presentation											

X = Completed Tasks, O = Milestone Deadlines