Knee Arthroscopy Manikin

Client:	Corinne Henak	
Consultants	Corinne Henak, Russ Johnson	
Team:	Shrey Ramesh (leader)	Delaney Reindl (leader)
	Jack Thurk (accountant)	Connor Dokken (communicator)
	Sierra Reschke (admin)	Rachel Dallet (admin)

Status

<u>Report Date:</u> 04/04/2024 <u>Next Milestone:</u> Final Review <u>Deadline:</u> 04/05/2024 <u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

Each subteam spent the last two weeks further developing their portions of the project as well as working on completing outreach deliverables. For the bone team, communication with Dr. Henak was initiated to set up a testing time for the cartilage tissue with the new bones. Wire testing was conducted to determine the strength of the wire, while the stress analysis was also continued using ANSYS and SpaceClaim software. For the enclosure team, the tibia enclosure was reprinted with two insertion points and a better duct clamp attachment mechanism was brainstormed for leak prevention. Once the enclosure assembly is updated with the new CAD prints and leak prevention mechanism, the team intends to test with the reservoir. For the pump team, the leaks at the connection ports between the sensors were reevaluated and the flow rate sensor was received without any wiring for power/data analysis, so the team inquired with Renesas regarding operation. Additionally, testing with the flow loop with the two pumps and with the enclosure team has been initiated.

New Tasks Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr
websites	BME websites. Update the project status as		
	well.		

Perform tissue testing	I set up next Wednesday, April 10th to do our	RD	2 hr
-		KD	2 III
with new prototype in	second round of testing for the bone team. We		
Henak Lab	need to make sure staples are made ahead of		
	time and hopefully get quantitative data this		
	time around.		
Assign Outreach activity	We finished the Outreach report and still need	RD	2 hr
guide sections and	to finish the activity guide. I assigned the		
complete section	group members with their portion of that. I		
	need to complete my section as well.		
Finish stress analysis	Get back onto an ME desktop computer and	RD	1.5 hr
	finish the meshing of our enclosure based on		
	Peter's (grad student) instructions.		
Conduct second round of	Next Wednesday Rachel and I will be going	SGR	2 hr
tissue testing	into Dr. Heank's lab to test the new prototype		
	with the live tissues. We will test the sample		
	attachment mechanism and hopefully insertion		
	of the bone models into the updated prototype.		
Continue mesh and stress	Now that Rachel was able to (almost)	SGR	2 hr
analysis work	successfully mesh the model in ANSYS, we		
	will work to import it into FEBio to re-mesh		
	and perform the stress analysis.		
Finish outreach	Look over and make edits on our outreach	SGR	2 hr
deliverables	activity guide and report. Finalize all		
	documents for submission		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Work on assigned	Will work on my assigned portion of the	DR	2 hr
outreach deliverables	activity guide.		
Test with updated	Once the CAD is updated and the leakages are	DR	2 hr
enclosure and reservoir	mediated, we will work on attaching the		
	enclosure to the reservoir and testing the fluid		
	system.		
Assist in enclosure	Assist Shrey in the enclosure assembly.	DR	1 hr
assembly			

Determine new duct	The clamps are currently causing small tears	DR	1 hr
clamp mechanism	within the plastic bag of the enclosure causing		
	leakages. We are currently considering using		
	the polyurethane foam to cover the area that's		
	ripping and then applying the clamps over		
	that.		
Create femur swing CAD	After talking with Russ Thursday morning, a	SKR	4 hr
	new method of femur bending was proposed. I		
	will CAD a new enclosure which does not		
	bend but the femur will sit on a "swing" which		
	will allow the femur to be flexed to various		
	angles without requiring the rest of the		
	enclosure to move		
Find and order new	Find thinner silicone to facilitate easier	SKR	1 hr
silicone	bending of the enclosure		
Assemble complete		SKR	1 hr
outreach deliverables for			

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Test flow loop with two	Second pump has was acquired yesterday.	CD	3.5 hr
pumps	Team will set up flow loop with all		
	components of pump/enclosure teams. For the		
	pump team, the main goal of this test is to see		
	if the pumps will effectively circulate the		
	water, or if it will pool in the plastic bags. This		
	will likely be easy to see visually, but if not		
	the water level in the reservoir can be		
	recorded before and after the test to quantify if		
	water is being recirculated back into the		
	reservoir. This test will also include the		
	current pressure gauge and we will experiment		
	to see if different settings of the pumps will		
	give different pressure readings, or any		
	readings at all.		

Leak tests on port	Major leakage issues of the enclosure bags	CD	2 hr
connections and new	due to the clamps have been solved, but		
valve	leakage from port connections is still		
	questionable. Need to do repeat tests with one		
	and two bags and see if simply screwing the		
	ports in through bags is a viable solution to		
	leakage. Also new valves were obtained today,		
	need to test the fit and seal with water of the		
	different sizes ordered.		
Flow rate sensor inquiry	We received a flow rate sensor from Renesas,	CD	0.5 hr
	but they did not provide wiring to power and		
	read data from the sensor. Need to check if		
	they will provide it as they did with the last		
	sample.		
Test enclosure with water	At some point in the near future, when the	JT	4 hr
and nitrogen setup	enclosure and pump team connect their		
	projects together, it would be valuable to test		
	the oxygen concentration test again with a		
	more accurate volume of liquid. To do this, we		
	would have to bring both the enclosure and		
	the full setup for the pump team to Dr.		
	Henak's lab and fill the whole thing with		
	liquid and begin deoxygenating. Most likely,		
	the process will take longer to deoxygenate to		
	the desired oxygen concentration due to an		
	increase in the volume of liquid, but hopefully		
	will still be under the 5 minute constraint for		
	the cartilage being outside of the media.		
Find the ideal setting for	A test will be run using both pumps in a	JT	2 hr
both pumps that works	closed loop system with the pressure gauge.		
best for staying within the	Through testing the system, the ideal setting		
acceptable pressure range	for the pumps will be recorded so that the		
	pressure stays within 0.75-1.5 psi. This will		
	help give a baseline value for when setting up		
	the pump system to work how it is supposed		
	to work.		

Old Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est. Time
Update BME and ME websites	Add the progress reports to both the ME and BME websites. Update the project status as well.	RD	0.5 hr
Set up a time to do testing with the tissues on the new bones	Discuss with the team and Dr. Henak a plan for our next round of testing. Should this be on a working prototype? Or should we do one more round of just the tissues and the wire? Find a time to do the testing.	RD	2 hr
Finish outreach deliverables	For outreach, we need a report, activity guide, and presentation to submit to Dr. Puccinelli. Work with the BME side of the team on those items	RD	2 hr
Conduct wire testing	Use random objects/scraps from the makespace to test the strength of our new wire	RD	1.5 hr
Conduct wire testing	Wire testing was performed without the bone models and we have been waiting for the bones to be reprinted. Now we will perform wire attachment testing on the bone models. Record and analyze results.	SGR	2 hrs
Continue stress analysis in ANSYS	Work with Peter Noonan to learn the ANSYS and SpaceClaim software and how to import our model and re-mesh. Goal is to successfully import the re-meshed model into FEBio.	SGR	2 hr
Finish outreach deliverables	Work over spring break to complete all outreach deliverables.	SGR	2 hr

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Work on outreach	Utilize spring break to complete all outreach	DR	2 hr
deliverables	variables.		
Test with updated	Once the CAD is updated and the leakages are	DR	2 hr
enclosure and reservoir	mediated, we will work on attaching the		
	enclosure to the reservoir and testing the fluid		
	system.		
Determine new duct	The clamps are currently causing small tears	DR	2 hr
clamp attachment	within the plastic bag of the enclosure causing		
mechanism	leakages. We are currently considering using		
	the polyurethane foam to cover the area that's		
	ripping and then applying the clamps over		
	that.		
Leak prevention	There are numerous modes of leaks which	SKR	4 hr
development	need to be addressed with the enclosure. I will		
	work with Connor and Delaney to determine		
	any potential solutions and implement them		
	before the next meeting		
Tibia enclosure reprint	Once we receive the port valves, reprint the	SKR	2 hr
	tibia enclosure with two insertion points of the		
	correct dimensions.		

Pump Team

Task Name	Description and Concrete Outcome	Owner	Est. Time
Test flow loop with two pumps	Second pump has been set aside but it needs to be brought home from Shrey's lab. Once it is available set up a test that uses both pumps to continue trying to make the current pressure gauge work. If more pressure is required perhaps the outlet pump could be at a slower speed, in reverse to provide back pressure, etc. testing will be completed to try and answer some of these questions.	CD	2.5 hr

Flow rate sensor inquiry	We received a flow rate sensor from Renesas, but they did not provide wiring to power and read data from the sensor. Need to check if they will provide it as they did with the last sample.	CD	0.5 hr
Continue testing with enclosure team	Continue testing enclosure with fluid flowing through it with Shrey. Need to determine if foam will provide enough extra padding to protect the bags from leaks. Also would be ideal to test second port with second pump.	CD	3 hr
Reevaluate the leaks at the connection ports between the sensor	Once the flow loop is constructed, the ports will need to be sealed to eliminate leakages from the port connections. This could be done using the extra sealant that was used for the reservoir construction.	JT	3 hr
Test enclosure with water and nitrogen setup	At some point in the near future, when the enclosure and pump team connect their projects together, it would be valuable to test the oxygen concentration test again with a more accurate volume of liquid. To do this, we would have to bring both the enclosure and the full setup for the pump team to Dr. Henak's lab and fill the whole thing with liquid and begin deoxygenating. Most likely, the process will take longer to deoxygenate to the desired oxygen concentration, but hopefully will still be under 10 minutes which is the maximum time cartilage can live without a media.	JT	3 hr

Technical Section

Author: Rachel Dallet

Conduct wire testing	Use random objects/scraps from the	RD	1.5 hr
	makespace to test the strength of our new wire		

Prior to our demonstration, Sierra and I were able to test our new wire and new bones with wood scraps we found in the TeamLab. We discovered that the grate that is under the lip of the bone may also serve as a place to wrap the wire in to secure it tighter. We will have to ask Dr. Henak if this is okay and further explain it in the meeting.

Author: Sierra Reschke

Conduct wire testing	Wire testing was performed without the bone	SGR	2 hrs
	models and we have been waiting for the bones to be reprinted. Now we will perform		
	wire attachment testing on the bone models.		
	Record and analyze results.		

Rachel and I met to test our attachment mechanism with various pieces of wood that we got from the TeamLab. We found that our staple attachment mechanism, grate, and increased number of holes overall led to a successful attachment. However, we will need to test this method and updated design with the actual tissue samples to validate its functionality.

Continue stress analysis in	Work with Peter Noonan to learn the ANSYS	SGR	2 hr
ANSYS	and SpaceClaim software and how to import		
	our model and re-mesh. Goal is to		
	successfully import the re-meshed model into		
	FEBio.		

Rachel and I worked to try to open our model in ANSYS to re-mesh it to allow for import into FEBio to perform a stress analysis. We initially struggles with SpaceClaim but Rachel was able to communicate with Peter Noonan and ended up successfully meshing the model.

Finish outreach	Work over spring break to complete all	SGR	2 hr
deliverables	outreach deliverables.		

I worked to complete a paragraph of the report and a few sections of the activity guide. I will need to go back and see if there is anything else assigned to me and review the work my teammates have done. Otherwise, I have completed my portions of the outreach deliverables.

Continue testing with	Continue testing enclosure with fluid flowing	CD	3 hr
enclosure team	through it with Shrey. Need to determine if		
	foam will provide enough extra padding to		
	protect the bags from leaks. Also would be		
	ideal to test second port with second pump.		

More testing was done to seal the enclosure, using the new enclosure, the foam in addition to the silicon, and a placing the silicon around the outside of the enclosure, the bags did not leak from contact with the edges of the clamps.

Reevaluate the leaks at the	Once the flow loop is constructed, the ports	JT	3 hr
connection ports between	will need to be sealed to eliminate leakages		
the sensor from the port connections. This could be done			
	using the extra sealant that was used for the		
	reservoir construction.		

Most of the leaks within the pump system have been fixed and secured. However some of the ports will continue to be reinforced with sealant to minimize the possibility of spontaneous leakages. Now the connection points between the tubes and the inlet and outlet ports of the enclosure will be focused on, as there are problems with leakages there when using a double layer of bags.

Tibia enclosure reprint	Once we receive the port valves, reprint the	SKR	2 hr
	tibia enclosure with two insertion points of the		
	correct dimensions.		

Tibia enclosure was reprinted and valves were included successfully. Magnets will be fastened to the attachment point this week.

Leak prevention	There are numerous modes of leaks which	SKR	4 hr
development	need to be addressed with the enclosure. I will		
	work with Connor and Delaney to determine		
	any potential solutions and implement them		
	before the next meeting		

The use of polyurethane foam prevented leaks from being formed at the clamp points. Leaks are still prevalent at the tube port locations due to bending of the enclosure.

Gantt Chart

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Feb		Mar			Apr				May					
Task	2	9	16	23	1	8	15	22	29	5	12	19	26	3	10
Individual Presentations				0											
Testing	Х														
Redesign and Fabrication	Х	Х	Х	Х											
Presentations				X											
Working Prototype Demonstration									0						
Redesign						Х	Х	Х	Х						
Fabrication						Х	X	Х	Х						
Presentation and Demonstration									Х						
Final Presentation															
Testing															
Report															
Presentation															

X = Completed Tasks, O = Milestone Deadlines