Knee Arthroscopy Manikin

Client:	Corinne Henak	
Consultants:	Corinne Henak, Russ Johnson	
Team:	Shrey Ramesh (leader)	Delaney Reindl (leader)
	Jack Thurk (accountant)	Connor Dokken (communicator)
	Sierra Reschke (admin)	Rachel Dallet (admin)

Status

<u>Report Date:</u> 02/01/24 <u>Next Milestone:</u> Individual Presentation <u>Deadline:</u> 02/02/24 <u>Status:</u> on schedule (green), deadline at risk (yellow), deadline unachievable (red)

Technical Summary

As the second semester begins, the bone team, enclosure team and pump team have compiled a list of to-dos to ensure a final functional prototype. For the bone team, testing with live samples will be conducted. Although viable samples don't have to be used, it is of high priority that Dr. Henak is consulted for samples that she may not be using anymore. Following sample testing, the bones should be reprinted with additional bars going across the open section to allow for more structural support. The bone team will also need to find and buy magnets for the bone and enclosure. This semester, the enclosure team will need to find and order biocompatible caulk as well as materials for flexion of the joint. The entire enclosure with silicone wrapping will be assembled, and the tolerances will need to be adjusted and the fabrication methods for the upper enclosure will need to be reevaluated. Moreover, the pump team will need to fabricate the media reservoir with either acrylic or a leftover plastic to reduce printing cost. Research will need to be done on different ways to measure pressure. The second pump will need to be acquired, and then the full flow loop will need to be assembled. A higher fidelity bubbler will also need to be fabricated.

New Tasks

Bone Team

Task Name	Description and Concrete Outcome	Owner	Est.	
			Time	
Update BME and ME	Add the progress reports to both the ME and	RD	0.5 hr	
websites	BME websites. Update the project status as			
	well.			

Look into TJA tissue	Research into the protocol of how the total	RD	2 hr
protocol joint arthroplasty tissue is dealt with after			
	removal		
Research magnets for	Find possible magnets to use for the enclosure	RD	2 hr
enclosure system	system that don't break off during assembly		
Schedule testing times for	Talk with Dr. Henak and Sierra and find times	RD	1.5 hr
the TJA samples	to begin testing on the TJA samples. Also		
	collaborate with the rest of the group on when		
	a working model will be ready.		
Research magnets for	Conduct research into possible magnets that	SGR	2 hr
bone and enclosure	can be used in place of the currently		
attachment.	implemented magnets. The current magnets		
	are brittle and pieces often fall off during use.		
	Ensure the dimensions are compatible with the		
	current design.		
Schedule TJA discarding	Work with Dr. Henak to schedule testing times	SGR	1 hr
testing times.	and availability with the total joint		
	arthroscopy discarded samples.		
Develop sample	Work with Rachel and the rest of the team to	SGR	2 hr
acquisition and testing	begin to develop the plan for acquiring the		
plan	TJA discard samples as well as the testing		
	protocols.		
Assist other sub-teams	Assist the other sub-teams with any tasks or	SGR	1 hr
	ideas that arise.		

Enclosure Team

Task Name	Description and Concrete Outcome	Owner	Est.
			Time
Biocompatible Caulk	I will need to research and order	DR	1 hr
	biocompatible caulk as a method of sealing		
	the enclosure material to the frame. Another		
	option would be superglue, however we want		
	this to be biocompatible/medical grade so it		
	does not conflict with viability testing. As of		
	now, we may use super glue as a cheaper seal		
	method.		
Flexion of Joint Material	I will need to research materials that allow for	DR	3 hr
	flexion of the joint, while not impeding		

	mechanical movement of the model or		
	conflicting with viability testing. Last		
	semester we ordered a silicone sheet, but it		
	turns out to be too stiff to allow for the desired		
	movement of the knee model.		
Flexion of Joint Material	As an aside to the aforementioned material for	DR	2 hr
(cont.)	joint flexion, I will research a different		
	enclosure material altogether that may meet		
	the flexibility demands of the knee model.		
	Considering the use of a polyethylene material		
	with hose clamps.		
Update enclosure CAD	Update the enclosure CAD based on the	SR	3 hr
	preliminary feedback from Dr. Henak as well		
	as visual inspection		
Make preliminary changes	Add more crossbars to the top of the bone and	SR	3 hr
to bone CAD wait for feedback from Sierra and Rachel for			
	what other changes should be made		

Ритр Теат

Task Name Description and Concrete Outcome		Owner	Est.
			Time
Find reservoir materials	Look through available resources, specifically	CD	1 hr
	scrap acrylic or plastic, to find suitable		
	materials for the reservoir. If needed consult		
	advisors and Dr. Cheedle.		
Begin assembling	Pick up materials and begin designing	CD	3 hr
reservoir	enclosures based on what is available. The		
	fabrication methods used will depend on the		
	material picked for the walls of the reservoir.		
Research flow rate	Research whether or not the acquired flow rate	CD	2 hr
sensors	sensor is compatible with liquids, or if the		
	company offers a similar product that is		
	designed for use with liquids.		
Create the second half of	To complete the closed loop for fluid flow, the	JT	2 hr
the tubing system	tubing from the enclosure to the reservoir		
	needs to be made. The system will look very		

	similar and will require another pump system							
	which Shrey is able to find and provide.							
Create a design matrix for	From last semester, there were two different	JT	2 hr					
the bubbler attachments.	bubbler attachments being considered. These							
	bubblers will be responsible for distributing							
	Nitrogen gas through the PBS liquid. Once a							
	design matrix is created, a clear winner between the two designs will be seen and therefore chosen for the final prototype							
	between the two designs will be seen and							
	therefore chosen for the final prototype.							
Based on the design	Once a bubbler design is chosen, find better	JT	1 hr					
matrix, find a more	ways for the bubbler to be made so that there							
permanent solution for	is less chance of equipment failure and need							
fabricating the bubbler	for replacement.							
attachments.								
Look into pump tubing	Research into pump clamps and find clamp	JT	1 hr					
clamps for connection	options for eliminating potential leaks from							
between tubing and	the connection ports between the enclosure							
enclosure	and the pump tubing. These clamps could							
	possibly be used to replace caulk that was							
	previously being considered.							

Old Tasks

Nothing to report.

Bone Team Enclosure Team Pump Team Technical Section Nothing to report.

Miscellaneous

Gantt Chart

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Sep				0	ct		Nov				Dec		
Task	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15
Team Object			0												
Decide on Object	Х														
CAD Model	Х	Х	Х												
ВОМ		X	Х												
Writeup		Х	Х												
Project Proposal					0										
Research Previous Solutions	X	X	Х												
Determine Applicable Standards	X	X	Х												
Design Specification		X	Х	X											
Report and Presentation			X	X	X										

Proof of Concept								0					
Design			х	х	Х	Х							
Fabrication						Х	X	Х					
Presentation and Demonstration								Х					
Midyear Review													0
Physical Prototype							X	Х	Х	X	Х		
Report											X		
Presentation											X	X	

X = Completed Tasks, O = Milestone Deadlines