

Preventing Weight Lifting Injuries with Barbell Modifications

Advisor

Dr. Megan Settell

Client

Robert Gold

The Team

Nolan BlomWillis (Leader)

Kaden Kafar (Communicator)

Jacob Parsons (BSAC)

James Waldenberger (BWIG)

Client Description and Problem Statement

Robert Gold

- Pharmacist
- Inventor

Our team's task is to create a marketable system that increases safety for lifting, specifically bench pressing.

Background

- Around one million people a year obtain a weightlifting injuries that result in an emergency room visit [1].
- Roughly 20-40% of these injuries are due to the bench press [2].
- Majority of these bench press injuries are shoulder related.

Figure 1: Benching Exercise

Competing Solutions

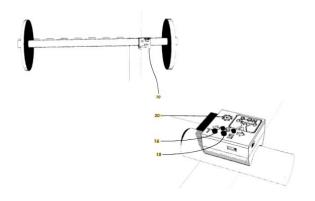


Figure 2: Barbell level indicator (US9623285B1) [3]

- Barbell attachment
- Accelerometer
- Sends to phone

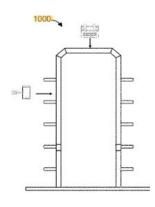


Figure 3: "Multi-functional weight rack and exercise monitoring system for tracking exercise movements (US10737140B2)" [4]

- Camera assembly
- Tracks Barbell
- Output to external device

Figure 4: Bar Sensei [5]

- Measures speed
- \$400
- Sends to phone by bluetooth

Design Specifications

- Create a device that measures and displays the balance of the barbell during the bench press.
- Device must use technology in a way that is unique to other systems that have been designed previously.
- Device should not cause an imbalance during the lift.

Barbell Design 1: Full Barbell

 Lift tracking and display circuitry implemented into the barbell

 Maintain physical properties and dimensions of existing barbells

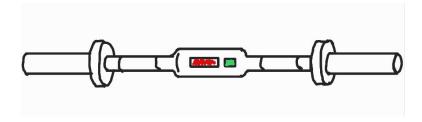


Figure 5: Drawing of Full barbell modification design.

Barbell Design 2: Barbell Attachment

 Attachable clip or sleeve to standard barbell

 Display and tracking integrated into attachment

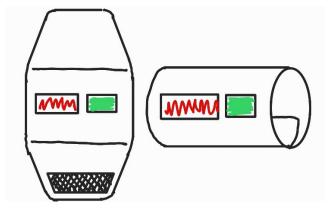


Figure 6: Drawing of potential barbell attachment designs.

Barbell Design 3: Full Suit + VR

Visually track the body and the barbell

 Use VR/headset to display lifting results and tracked data

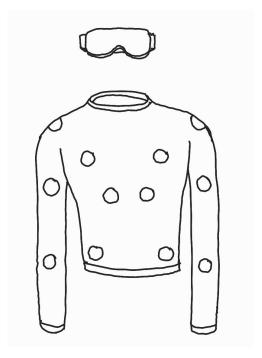


Figure 7: Drawing of Full Suit and VR design idea.

Barbell Design Matrix

Design	Full barbell		Barbell attachment		Full suit + VR	
Safety (25)	4/5	20	5/5	25	5/5	25
Ease of Use (20)	4/5	16	5/5	20	2/5	8
Uniqueness (20)	3/5	12	2/5	8	5/5	20
Marketability (20)	3/5	12	4/5	16	5/5	20
Cost (10)	3/5	6	5/5	10	1/5	2
Ease of Fabrication (5)	2/5	2	4/5	4	1/5	1
Overall Score:	68		83		76	

Table 1: The Design Matrix Ranking each Barbell Design

Technology Design 1: Radar / Lidar

Idea: calculate distance by bouncing signal off of the ground and measuring time.

- Very unique
- Possible issues with angle of bar

Figure 8: Image of a Radar Sensor

Technology Design 2: Accelerometers

Idea: use acceleration data to calculate distance traveled

- No significant drawbacks
- Already been used in a lot of similar patents

Figure 9: Image of Accelerometer

Technology Design 3: IMUs

Idea: Similar to accelerometer, calculate distance with sensor output

- More specific data than accelerometer
- Potentially requires calibration before use



Figure 10: Image of an IMU

Technology Design Matrix

Technology	Radar/Lidar		Accelerometer		IMU					
		\$R04								
Accuracy (25)	5/5	25	4/5	20	3/5	15				
Reliability (25)	3/5	15	4/5	20	4/5	20				
Marketability (20)	5/5	20	2/5	8	3/5	12				
Cost (15)	2/5	6	4/5	12	3/5	9				
Ease of Fabrication (10)	2/5	4	4/5	8	3/5	6				
Safety (5)	5/5	5	5/5	5	5/5	5				
Overall Score:	75		72		67					

Table 2: The Design Matrix Ranking each Technology Design

Preliminary Design

- Attach an ultrasonic array around both sides of the barbell
- Place a center screen around the center of the barbell

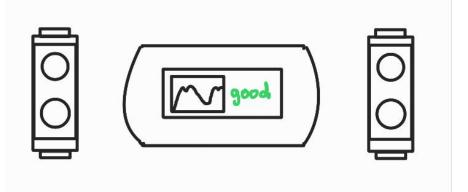


Figure 11: Preliminary Design

Preliminary Design (Continued)

- Utilize position to track these data points:
 - Position, velocity, acceleration
 - Force
 - Angle
- Utilizing code to calculate this data

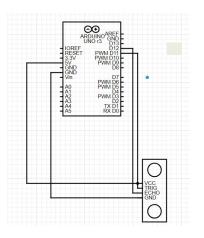
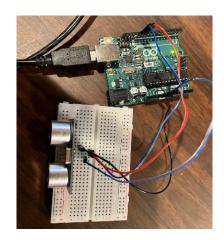


Figure 12: Circuit diagram of prototype



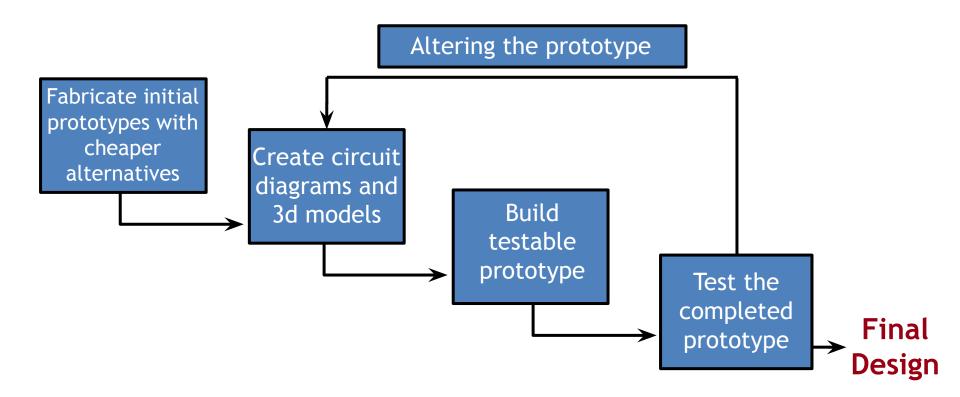

Figure 13: Initial prototype utilizing an ultrasonic sensor

Figure 14: Code output of the first draft of this design

```
10.38in1, 10.20in2, -0.35vel1, 0.32vel2, 0.65acc.
10.70in1, 10.70in2, 0.00vel1, -0.69vel2, -0.68acc.
10.18in1, 10.54in2, 0.71vel1, -0.01vel2, -0.71acc.
10.53in1, 10.20in2, -0.65vel1, 0.67vel2, 1.30acc.
10.66in1, 10.47in2, -0.37vel1, 1.13vel2, 1.48acc.
```


Future Plans

Acknowledgments

Thank you to Dr. John Puccinelli, our advisor Dr. Settell, our client Mr. Gold, and TA Benjamin Walker!

References

[1] K. Golshani, M. E. Cinque, P. O'Halloran, K. Softness, L. Keeling, and J. R. Macdonell, "Upper extremity weightlifting injuries: Diagnosis and management," J Orthop, vol. 15, no. 1, pp. 24–27, Mar. 2018, doi: 10.1016/j.jor.2017.11.005.

[2] V. Bengtsson, L. Berglund, and U. Aasa, "Narrative review of injuries in powerlifting with special reference to their association to the squat, bench press and deadlift," *BMJ Open Sport & Exercise Medicine*, vol. 4, no. 1, p. e000382, Jul. 2018, doi: https://doi.org/10.1136/bmjsem-2018-000382.

[3] Bar sensei, http://files.assess2perform.com/barsensei.html (accessed Feb. 28, 2024).

[4] M. M. Ruiz, "Barbell Level Indicator," Apr. 18, 2017

[5] J. Rothman and N. Rodman, "Multi-functional weight rack and exercise monitoring system for tracking exercise movements," Aug. 11, 2020

Questions and Comments?

